HOME
*





Difference Set
In combinatorics, a (v,k,\lambda) difference set is a subset D of size k of a group G of order v such that every nonidentity element of G can be expressed as a product d_1d_2^ of elements of D in exactly \lambda ways. A difference set D is said to be ''cyclic'', ''abelian'', ''non-abelian'', etc., if the group G has the corresponding property. A difference set with \lambda = 1 is sometimes called ''planar'' or ''simple''. If G is an abelian group written in additive notation, the defining condition is that every nonzero element of G can be written as a ''difference'' of elements of D in exactly \lambda ways. The term "difference set" arises in this way. Basic facts * A simple counting argument shows that there are exactly k^2-k pairs of elements from D that will yield nonidentity elements, so every difference set must satisfy the equation k^2-k=(v-1)\lambda. * If D is a difference set, and g\in G, then gD=\ is also a difference set, and is called a translate of D (D + g in additi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics is gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Least Common Multiple
In arithmetic and number theory, the least common multiple, lowest common multiple, or smallest common multiple of two integers ''a'' and ''b'', usually denoted by lcm(''a'', ''b''), is the smallest positive integer that is divisible by both ''a'' and ''b''. Since division of integers by zero is undefined, this definition has meaning only if ''a'' and ''b'' are both different from zero. However, some authors define lcm(''a'',0) as 0 for all ''a'', since 0 is the only common multiple of ''a'' and 0. The lcm is the "lowest common denominator" (lcd) that can be used before fractions can be added, subtracted or compared. The least common multiple of more than two integers ''a'', ''b'', ''c'', . . . , usually denoted by lcm(''a'', ''b'', ''c'', . . .), is also well defined: It is the smallest positive integer that is divisible by each of ''a'', ''b'', ''c'', . . . Overview A multiple of a number is the product of that number and an integer. For example, 10 is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Combinatorial Design
Combinatorial design theory is the part of combinatorial mathematics that deals with the existence, construction and properties of systems of finite sets whose arrangements satisfy generalized concepts of ''balance'' and/or ''symmetry''. These concepts are not made precise so that a wide range of objects can be thought of as being under the same umbrella. At times this might involve the numerical sizes of set intersections as in block designs, while at other times it could involve the spatial arrangement of entries in an array as in sudoku grids. Combinatorial design theory can be applied to the area of design of experiments. Some of the basic theory of combinatorial designs originated in the statistician Ronald Fisher's work on the design of biological experiments. Modern applications are also found in a wide gamut of areas including finite geometry, tournament scheduling, lotteries, mathematical chemistry, mathematical biology, algorithm design and analysis, networking, g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grassmannian
In mathematics, the Grassmannian is a space that parameterizes all -Dimension, dimensional linear subspaces of the -dimensional vector space . For example, the Grassmannian is the space of lines through the origin in , so it is the same as the projective space of one dimension lower than . When is a real or complex vector space, Grassmannians are compact space, compact smooth manifolds. In general they have the structure of a smooth algebraic variety, of dimension k(n-k). The earliest work on a non-trivial Grassmannian is due to Julius Plücker, who studied the set of projective lines in projective 3-space, equivalent to and parameterized them by what are now called Plücker coordinates. Hermann Grassmann later introduced the concept in general. Notations for the Grassmannian vary between authors; notations include , , , or to denote the Grassmannian of -dimensional subspaces of an -dimensional vector space . Motivation By giving a collection of subspaces of some vecto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Welch Bounds
In mathematics, Welch bounds are a family of inequalities pertinent to the problem of evenly spreading a set of unit vectors in a vector space. The bounds are important tools in the design and analysis of certain methods in telecommunication engineering, particularly in coding theory. The bounds were originally published in a 1974 paper by L. R. Welch. Mathematical statement If \ are unit vectors in \mathbb^n, define c_\max = \max_ , \langle x_i, x_j \rangle, , where \langle\cdot,\cdot\rangle is the usual inner product on \mathbb^n. Then the following inequalities hold for k=1,2,\dots:(c_\max)^ \geq \frac \left \frac-1 \rightWelch bounds are also sometimes stated in terms of the averaged squared overlap between the set of vectors. In this case, one has the inequality\frac\sum_^m , \langle x_i,x_j\rangle, ^ \ge \frac. Applicability If m\leq n, then the vectors \ can form an orthonormal set in \mathbb^n. In this case, c_\max=0 and the bounds are vacuous. Consequently, interpret ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Codebook
A codebook is a type of document used for gathering and storing cryptography codes. Originally codebooks were often literally , but today codebook is a byword for the complete record of a series of codes, regardless of physical format. Cryptography In cryptography, a codebook is a document used for implementing a code. A codebook contains a lookup table for coding and decoding; each word or phrase has one or more strings which replace it. To decipher messages written in code, corresponding copies of the codebook must be available at either end. The distribution and physical security of codebooks presents a special difficulty in the use of codes, compared to the secret information used in ciphers, the key, which is typically much shorter. The United States National Security Agency documents sometimes use ''codebook'' to refer to block ciphers; compare their use of ''combiner-type algorithm'' to refer to stream ciphers. Codebook come in two forms, one-part or two-part: * In one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Georgios B
Georgios (, , ) is a Greek name derived from the word ''georgos'' (, , "farmer" lit. "earth-worker"). The word ''georgos'' (, ) is a compound of ''ge'' (, , "earth", "soil") and ''ergon'' (, , "task", "undertaking", "work"). It is one of the most usual given names in Greece and Cyprus. The name day is 23 April (St George's Day). The English form of the name is George, the latinized form is ''Georgius''. It was rarely given in England prior to the accession of George I of Great Britain in 1714. The Greek name is usually anglicized as ''George''. For example, the name of ''Georgios Kuprios'' is anglicized as George of Cyprus, and latinized as ''Georgius Cyprius''; similarly George Hamartolos (d. 867), George Maniakes (d. 1043), George Palaiologos (d. 1118). In the case of modern Greek individuals, the spelling ''Georgios'' may be retained, e.g. Georgios Christakis-Zografos (1863–1920), Georgios Stanotas (1888–1965), Georgios Grivas (1897–1974), Georgios Alogoskoufis (b. 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Marshall Hall (mathematician)
Marshall Hall Jr. (17 September 1910 – 4 July 1990) was an American mathematician who made significant contributions to group theory and combinatorics. Career Hall studied mathematics at Yale University, graduating in 1932. He studied for a year at Cambridge University under a Henry Fellowship working with G. H. Hardy. He returned to Yale to take his Ph.D. in 1936 under the supervision of Øystein Ore. He worked in Naval Intelligence during World War II, including six months in 1944 at Bletchley Park, the center of British wartime code breaking. In 1946 he took a position at Ohio State University. In 1959 he moved to the California Institute of Technology where, in 1973, he was named the first IBM Professor at Caltech, the first named chair in mathematics. After retiring from Caltech in 1981, he accepted a post at Emory University in 1985. Hall died in 1990 in London on his way to a conference to mark his 80th birthday. Contributions He wrote a number of papers of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Bruck
Richard Hubert Bruck (December 26, 1914 – December 18, 1991) was an American mathematician best known for his work in the field of algebra, especially in its relation to projective geometry and combinatorics. Bruck studied at the University of Toronto, where he received his doctorate in 1940 under the supervision of Richard Brauer. He spent most his career as a professor at University of Wisconsin–Madison, advising at least 31 doctoral students. He is best known for his 1949 paper coauthored with H. J. Ryser, the results of which became known as the Bruck–Ryser theorem (now known in a generalized form as the Bruck-Ryser-Chowla theorem), concerning the possible orders of finite projective planes. In 1946, he was awarded a Guggenheim Fellowship. In 1956, he was awarded the Chauvenet Prize for his articl''Recent Advances in the Foundations of Euclidean Plane Geometry'' In 1962, he was an invited speaker at the International Congress of Mathematicians in Stockholm. In 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Trace Function
In linear algebra, the trace of a square matrix , denoted , is defined to be the sum of elements on the main diagonal (from the upper left to the lower right) of . The trace is only defined for a square matrix (). It can be proved that the trace of a matrix is the sum of its (complex) eigenvalues (counted with multiplicities). It can also be proved that for any two matrices and . This implies that similar matrices have the same trace. As a consequence one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the th row and th column of . The entries of can be real numbers or (more generally) complex numbers. The trace is not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod when is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number and every positive integer there are fields of order p^k, all of which are isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set which is a field; this means that multiplication, addition, subtraction and division (excluding division by zero) are def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Automorphism
In abstract algebra, a group isomorphism is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished. Definition and notation Given two groups (G, *) and (H, \odot), a ''group isomorphism'' from (G, *) to (H, \odot) is a bijective group homomorphism from G to H. Spelled out, this means that a group isomorphism is a bijective function f : G \to H such that for all u and v in G it holds that f(u * v) = f(u) \odot f(v). The two groups (G, *) and (H, \odot) are isomorphic if there exists an isomorphism from one to the other. This is written (G, *) \cong (H, \odot). Often shorter and simpler notations can be used. When the relevant group operations are understood, they are omitted and one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]