HOME





Determinacy
Determinacy is a subfield of game theory and set theory that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name determinateness. The games studied in set theory are usually Gale–Stewart games—two-player games of perfect information in which the players make an infinite sequence of moves and there are no draws. The field of game theory studies more general kinds of games, including games with draws such as tic-tac-toe, chess, or infinite chess, or games with imperfect information such as poker. Basic notions Games The first sort of game we shall consider is the two-player game of perfect information of length ω, in which the players play natural numbers. These games are often called Gale–St ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Determinacy
In descriptive set theory, the Borel determinacy theorem states that any Gale–Stewart game whose payoff set is a Borel set is determined, meaning that one of the two players will have a winning strategy for the game. A Gale–Stewart game is a possibly infinite two-player game, where both players have perfect information and no randomness is involved. The theorem is a far reaching generalization of Zermelo's theorem about the determinacy of finite games. It was proved by Donald A. Martin in 1975, and is applied in descriptive set theory to show that Borel sets in Polish spaces have regularity properties such as the perfect set property. The theorem is also known for its metamathematical properties. In 1971, before the theorem was proved, Harvey Friedman showed that any proof of the theorem in Zermelo–Fraenkel set theory must make repeated use of instances of the axiom schema of replacement. Later results showed that stronger determinacy theorems cannot be proven in Zermelo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reverse Mathematics
Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones. The reverse mathematics program was foreshadowed by results in set theory such as the classical theorem that the axiom of choice and Zorn's lemma are equivalent over ZF set theory. The goal of reverse mathematics, however, is to study possible axioms of ordinary theorems of mathematics rather than possible axioms for set theory. Reverse mathematics is usually carried out using subsystems of second-order arithmetic,Simpson, Stephen G. (2009), Subsystems of second-order arithmetic, Perspectives in Logic (2nd ed.), Cambridge University Press, doi:10.1017/CBO9780511581007, ISBN 97 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Hierarchy
In mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number called the rank of the Borel set. The Borel hierarchy is of particular interest in descriptive set theory. One common use of the Borel hierarchy is to prove facts about the Borel sets using transfinite induction on rank. Properties of sets of small finite ranks are important in measure theory and analysis. Borel sets The Borel algebra in an arbitrary topological space is the smallest collection of subsets of the space that contains the open sets and is closed under countable unions and complementation. It can be shown that the Borel algebra is closed under countable intersections as well. A short proof that the Borel algebra is well-defined proceeds by showing that the entire powerset of the space is closed under complements and co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Large Cardinal
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least α such that α=ωα). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more". There is a rough convention that results provable from ZFC alone may be stated without hypotheses, but that if the proof requires other assumptions (such as the existence of large cardinals), these should be stated. Whether this is simply a linguistic convention, or something more, is a controversial point among distinct ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wadge Hierarchy
In descriptive set theory, within mathematics, Wadge degrees are levels of complexity for sets of reals. Sets are compared by continuous reductions. The Wadge hierarchy is the structure of Wadge degrees. These concepts are named after William W. Wadge. Wadge degrees Suppose A and B are subsets of Baire space ωω. Then A is Wadge reducible to B or A ≤W B if there is a continuous function f on ωω with A = f^ /math>. The Wadge order is the preorder or quasiorder on the subsets of Baire space. Equivalence classes of sets under this preorder are called Wadge degrees, the degree of a set A is denoted by A">math>Asub>W. The set of Wadge degrees ordered by the Wadge order is called the Wadge hierarchy. Properties of Wadge degrees include their consistency with measures of complexity stated in terms of definability. For example, if A ≤W B and B is a countable intersection of open sets, then so is A. The same works for all levels of the Borel hierarchy and the difference hier ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Set
In the mathematical field of descriptive set theory, a subset of a Polish space X is an analytic set if it is a continuous image of a Polish space. These sets were first defined by and his student . Definition There are several equivalent definitions of analytic set. The following conditions on a subspace ''A'' of a Polish space ''X'' are equivalent: *''A'' is analytic. *''A'' is empty or a continuous image of the Baire space ωω. *''A'' is a Suslin space, in other words ''A'' is the image of a Polish space under a continuous mapping. *''A'' is the continuous image of a Borel set in a Polish space. *''A'' is a Suslin set, the image of the Suslin operation. *There is a Polish space Y and a Borel set B\subseteq X\times Y such that A is the projection of B onto X; that is, : A=\. *''A'' is the projection of a closed set in the cartesian product of ''X'' with the Baire space. *''A'' is the projection of a Gδ set in the cartesian product of ''X'' with the Cantor space 2� ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inner Model
In set theory, a branch of mathematical logic, an inner model for a theory ''T'' is a substructure of a model ''M'' of a set theory that is both a model for ''T'' and contains all the ordinals of ''M''. Definition Let ''L'' = ⟨∈⟩ be the language of set theory. Let ''S'' be a particular set theory, for example the ZFC axioms and let ''T'' (possibly the same as ''S'') also be a theory in ''L.'' If ''M'' is a model for ''S,'' and ''N'' is an such that # ''N'' is a substructure of ''M,'' i.e. the interpretation ∈''N'' of ∈ in ''N'' is ∈''M'' ∩ ''N''2 # ''N'' is a model of ''T'' # the domain of ''N'' is a transitive class of ''M'' # ''N'' contains all ordinals in ''M'' then we say that ''N'' is an inner model of ''T'' (in ''M''). Usually ''T'' will equal (or subsume) ''S'', so that ''N'' is a model for ''S'' 'inside' the model ''M'' of ''S''. If only conditions 1 and 2 hold, ''N'' is called a standard model of ''T'' (in ''M''), a ''standard ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pointclass
In the mathematical field of descriptive set theory, a pointclass is a collection of Set (mathematics), sets of point (mathematics), points, where a ''point'' is ordinarily understood to be an element of some perfect set, perfect Polish space. In practice, a pointclass is usually characterized by some sort of ''definability property''; for example, the collection of all open sets in some fixed collection of Polish spaces is a pointclass. (An open set may be seen as in some sense definable because it cannot be a purely arbitrary collection of points; for any point in the set, all points sufficiently close to that point must also be in the set.) Pointclasses find application in formulating many important principles and theorems from set theory and real analysis. Strong set-theoretic principles may be stated in terms of the determinacy of various pointclasses, which in turn implies that sets in those pointclasses (or sometimes larger ones) have regularity properties such as Lebesgue m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Second-order Arithmetic
In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation of mathematics, foundation for much, but not all, of mathematics. A precursor to second-order arithmetic that involves third-order parameters was introduced by David Hilbert and Paul Bernays in their book ''Grundlagen der Mathematik''. The standard axiomatization of second-order arithmetic is denoted by Z2. Second-order arithmetic includes, but is significantly stronger than, its first-order logic, first-order counterpart Peano_axioms#Peano_arithmetic_as_first-order_theory, Peano arithmetic. Unlike Peano arithmetic, second-order arithmetic allows Quantification (logic), quantification over sets of natural numbers as well as numbers themselves. Because real numbers can be represented as (infinite set, infinite) sets of natural numbers in well-known ways, and because second-order arithmet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transfinite Induction
Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for all ordinals \alpha. Suppose that whenever P(\beta) is true for all \beta < \alpha, then P(\alpha) is also true. Then transfinite induction tells us that P is true for all ordinals. Usually the proof is broken down into three cases: * Zero case: Prove that P(0) is true. * Successor case: Prove that for any successor ordinal \alpha+1, P(\alpha+1) follows from P(\alpha) (and, if necessary, P(\beta) for all \beta < \alpha). * Limit case: Prove that for any
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Power Set
In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory. It guarantees for every set x the existence of a set \mathcal(x), the power set of x, consisting precisely of the subsets of x. By the axiom of extensionality, the set \mathcal(x) is unique. The axiom of power set appears in most axiomatizations of set theory. It is generally considered uncontroversial, although constructive set theory prefers a weaker version to resolve concerns about predicativity. Formal statement The subset relation \subseteq is not a primitive notion in formal set theory and is not used in the formal language of the Zermelo–Fraenkel axioms. Rather, the subset relation \subseteq is defined in terms of set membership, \in. Given this, in the formal language of the Zermelo–Fraenkel axioms, the axiom of power set reads: :\forall x \, \exists y \, \forall z \, \in y \iff \forall w \, (w \in z \Rightarrow w \in x)/math> where ''y'' is the power s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]