Derrick's Theorem
   HOME
*





Derrick's Theorem
Derrick's theorem is an argument by physicist G. H. Derrick which shows that stationary localized solutions to a nonlinear wave equation or nonlinear Klein–Gordon equation in spatial dimensions three and higher are unstable. Original argument Derrick's paper, which was considered an obstacle to interpreting soliton-like solutions as particles, contained the following physical argument about non-existence of stable localized stationary solutions to the nonlinear wave equation :\nabla^2 \theta-\frac=\frac 1 2 f'(\theta), \qquad \theta(x,t)\in\R,\quad x\in\R^3, now known under the name of Derrick's Theorem. (Above, f(s) is a differentiable function with f'(0)=0.) The energy of the time-independent solution \theta(x)\, is given by : E=\int\left \nabla\theta)^2+f(\theta)\right\, d^3 x. A necessary condition for the solution to be stable is \delta^2 E\ge 0\,. Suppose \theta(x)\, is a localized solution of \delta E=0\,. Define \theta_\lambda(x)=\theta(\lambda x)\, where \lamb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Soliton
In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. (Dispersive effects are a property of certain systems where the speed of a wave depends on its frequency.) Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems. The soliton phenomenon was first described in 1834 by John Scott Russell (1808–1882) who observed a solitary wave in the Union Canal in Scotland. He reproduced the phenomenon in a wave tank and named it the "Wave of Translation". Definition A single, consensus definition of a soliton is difficult to find. ascribe three properties to solitons: # They are of permanent form; # They are localized within a region; # They can interact with other solitons, and emerge from the collision unchanged, e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Functional (mathematics)
In mathematics, a functional (as a noun) is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author). * In linear algebra, it is synonymous with linear forms, which are linear mapping from a vector space V into its Field (mathematics), field of scalars (that is, an element of the dual space V^*) "Let ''E'' be a free module over a commutative ring ''A''. We view ''A'' as a free module of rank 1 over itself. By the dual module ''E''∨ of ''E'' we shall mean the module Hom(''E'', ''A''). Its elements will be called functionals. Thus a functional on ''E'' is an ''A''-linear map ''f'' : ''E'' → ''A''." * In functional analysis and related fields, it refers more generally to a mapping from a space X into the field of Real numbers, real or complex numbers. "A numerical function ''f''(''x'') defined on a normed linear space ''R'' will be called a ''functional''. A functional ''f''(''x'') is said to be ''linear'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Virial Theorem
In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by potential forces, with that of the total potential energy of the system. Mathematically, the theorem states \left\langle T \right\rangle = -\frac12\,\sum_^N \bigl\langle \mathbf_k \cdot \mathbf_k \bigr\rangle where is the total kinetic energy of the particles, represents the force on the th particle, which is located at position , and angle brackets represent the average over time of the enclosed quantity. The word virial for the right-hand side of the equation derives from ''vis'', the Latin word for "force" or "energy", and was given its technical definition by Rudolf Clausius in 1870. The significance of the virial theorem is that it allows the average total kinetic energy to be calculated even for very complicated systems that defy an exact solution, such as those considered in statistical mechanics; thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orbital Stability
In mathematical physics and the theory of partial differential equations, the solitary wave solution of the form u(x,t)=e^\phi(x) is said to be orbitally stable if any solution with the initial data sufficiently close to \phi(x) forever remains in a given small neighborhood of the trajectory of e^\phi(x). Formal definition Formal definition is as follows. Consider the dynamical system : i\frac=A(u), \qquad u(t)\in X, \quad t\in\R, with X a Banach space over \Complex, and A : X \to X. We assume that the system is \mathrm(1)-invariant, so that A(e^u) = e^A(u) for any u\in X and any s\in\R. Assume that \omega \phi=A(\phi), so that u(t)=e^\phi is a solution to the dynamical system. We call such solution a solitary wave. We say that the solitary wave e^\phi is orbitally stable if for any \epsilon > 0 there is \delta > 0 such that for any v_0\in X with \Vert \phi-v_0\Vert_X < \delta there is a solution v(t) defined for all t\ge 0 such that ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vakhitov–Kolokolov Stability Criterion
The Vakhitov–Kolokolov stability criterion is a condition for linear stability (sometimes called ''spectral stability'') of solitary wave solutions to a wide class of U(1)-invariant Hamiltonian systems, named after Soviet scientists Aleksandr Kolokolov (Александр Александрович Колоколов) and Nazib Vakhitov (Назиб Галиевич Вахитов). The condition for linear stability of a solitary wave u(x,t) = \phi_\omega(x)e^ with frequency \omega has the form : \fracQ(\omega)<0, where Q(\omega)\, is the charge (or ) of the solitary wave \phi_\omega(x)e^, conserved by Noether's theorem due to U(1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Orbital Stability
In mathematical physics and the theory of partial differential equations, the solitary wave solution of the form u(x,t)=e^\phi(x) is said to be orbitally stable if any solution with the initial data sufficiently close to \phi(x) forever remains in a given small neighborhood of the trajectory of e^\phi(x). Formal definition Formal definition is as follows. Consider the dynamical system : i\frac=A(u), \qquad u(t)\in X, \quad t\in\R, with X a Banach space over \Complex, and A : X \to X. We assume that the system is \mathrm(1)-invariant, so that A(e^u) = e^A(u) for any u\in X and any s\in\R. Assume that \omega \phi=A(\phi), so that u(t)=e^\phi is a solution to the dynamical system. We call such solution a solitary wave. We say that the solitary wave e^\phi is orbitally stable if for any \epsilon > 0 there is \delta > 0 such that for any v_0\in X with \Vert \phi-v_0\Vert_X < \delta there is a solution v(t) defined for all t\ge 0 such that ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Stability
In mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form \frac = A r, where ''r'' is the perturbation to the steady state, ''A'' is a linear operator whose spectrum contains eigenvalues with ''positive'' real part. If all the eigenvalues have ''negative'' real part, then the solution is called linearly stable. Other names for linear stability include exponential stability or stability in terms of first approximation. If there exist an eigenvalue with ''zero'' real part then the question about stability cannot be solved on the basis of the first approximation and we approach the so-called "centre and focus problem". Examples Ordinary differential equation The differential equation \frac = x - x^2 has two stationary (time-independent) solutions: ''x'' = 0 and ''x'' = 1. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variational Derivative
In the calculus of variations, a field of mathematical analysis, the functional derivative (or variational derivative) relates a change in a functional (a functional in this sense is a function that acts on functions) to a change in a function on which the functional depends. In the calculus of variations, functionals are usually expressed in terms of an integral of functions, their arguments, and their derivatives. In an integral of a functional, if a function is varied by adding to it another function that is arbitrarily small, and the resulting integrand is expanded in powers of , the coefficient of in the first order term is called the functional derivative. For example, consider the functional J = \int_a^b L( \, x, f(x), f \, '(x) \, ) \, dx \ , where . If is varied by adding to it a function , and the resulting integrand is expanded in powers of , then the change in the value of to first order in can be expressed as follows:According to , this notation is customary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nonlinear Wave Equation
In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists because most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems. Typically, the behavior of a nonlinear system is described in mathematics by a nonlinear system of equations, which is a set of simultaneous equations in which the unknowns (or the unknown functions in the case of differential equations) appear as variables of a polynomial of degree higher than one or in the argument of a function which is not a polynomial of degree one. In other words, in a nonlinear system of equations, the equation(s) to be solved cannot be written as a linear combination of the un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hamilton Function
Hamilton may refer to: People * Hamilton (name), a common British surname and occasional given name, usually of Scottish origin, including a list of persons with the surname ** The Duke of Hamilton, the premier peer of Scotland ** Lord Hamilton (other), several Scottish, Irish and British peers, and some members of the judiciary, who may be referred to simply as ''Hamilton'' ** Clan Hamilton, an ancient Scottish kindred * Alexander Hamilton (1755–1804), first U.S. Secretary of the Treasury and one of the Founding Fathers of the United States * Lewis Hamilton, a British Formula One driver *William Rowan Hamilton (1805–1865), Irish physicist, astronomer, and mathematician for whom ''Hamiltonian mechanics'' is named *Hamílton (footballer) (born 1980), Togolese footballer Places Australia * Hamilton, New South Wales, suburb of Newcastle * Hamilton Hill, Western Australia, suburb of Perth * Hamilton, South Australia * Hamilton, Tasmania * Hamilton, Victoria Queensl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamiltonian System
A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory. Overview Informally, a Hamiltonian system is a mathematical formalism developed by Hamilton to describe the evolution equations of a physical system. The advantage of this description is that it gives important insights into the dynamics, even if the initial value problem cannot be solved analytically. One example is the planetary movement of three bodies: while there is no closed-form solution to the general problem, Poincaré showed for the first time that it exhibits deterministic chaos. Formally, a Hamiltonian system is a dynamical system characterised by the scalar function H(\boldsymbol,\boldsymbol,t), also known as the Hamiltonian. The state of the system, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]