HOME
*





Delta Function (other)
A Dirac delta function or simply delta function is a generalized function on the real number line denoted by δ that is zero everywhere except at zero, with an integral of one over the entire real line. Delta function may also refer to: * Kronecker delta, a function of two variables which is one for equal arguments and zero otherwise, and which forms the identity element of an incidence algebra * Modular discriminant (Δ), a complex function in Weierstrass's elliptic functions See also * Delta function potential, in quantum mechanics, a potential well described by the Dirac delta function * Delta-functor * Delta operator * Hooley's Delta function, maximum number of divisors of n in , eufor all u, where e is Euler's number The number , also known as Euler's number, is a mathematical constant approximately equal to 2.71828 that can be characterized in many ways. It is the base of a logarithm, base of the natural logarithms. It is the Limit of a sequence, limit ...
. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dirac Delta Function
In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. The current understanding of the unit impulse is as a linear functional that maps every continuous function (e.g., f(x)) to its value at zero of its domain (f(0)), or as the weak limit of a sequence of bump functions (e.g., \delta(x) = \lim_ \frace^), which are zero over most of the real line, with a tall spike at the origin. Bump functions are thus sometimes called "approximate" or "nascent" delta distributions. The delta function was introduced by physicist Paul Dirac as a tool for the normalization of state vectors. It also has uses in probability theory and signal processing. Its validity was disputed until Laurent Schwartz developed the theory of distributions where it is defined as a linear form acting on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kronecker Delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 &\text i=j. \end or with use of Iverson brackets: \delta_ = =j, where the Kronecker delta is a piecewise function of variables and . For example, , whereas . The Kronecker delta appears naturally in many areas of mathematics, physics and engineering, as a means of compactly expressing its definition above. In linear algebra, the identity matrix has entries equal to the Kronecker delta: I_ = \delta_ where and take the values , and the inner product of vectors can be written as \mathbf\cdot\mathbf = \sum_^n a_\delta_b_ = \sum_^n a_ b_. Here the Euclidean vectors are defined as -tuples: \mathbf = (a_1, a_2, \dots, a_n) and \mathbf= (b_1, b_2, ..., b_n) and the last step is obtained by using the values of the Kronecker delta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Discriminant
In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script ''p''. They play an important role in the theory of elliptic functions. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice. Symbol for Weierstrass \wp-function Definition Let \omega_1,\omega_2\in\mathbb be two complex numbers that are linearly independent over \mathbb and let \Lambda:=\mathbb\omega_1+\mathbb\omega_2:=\ be the lattice generated by those numbers. Then the \wp-function is defined as follows: \weierp(z,\omega_1,\omega_2):=\weierp(z,\Lambda) := \frac + \sum_\left(\frac 1 - \frac 1 \right). This series converges locally uniformly absolutely in \math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Delta Function Potential
In quantum mechanics the delta potential is a potential well mathematically described by the Dirac delta function - a generalized function. Qualitatively, it corresponds to a potential which is zero everywhere, except at a single point, where it takes an infinite value. This can be used to simulate situations where a particle is free to move in two regions of space with a barrier between the two regions. For example, an electron can move almost freely in a conducting material, but if two conducting surfaces are put close together, the interface between them acts as a barrier for the electron that can be approximated by a delta potential. The delta potential well is a limiting case of the finite potential well, which is obtained if one maintains the product of the width of the well and the potential constant while decreasing the well's width and increasing the potential. This article, for simplicity, only considers a one-dimensional potential well, but analysis could be expanded ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Delta-functor
In homological algebra, a δ-functor between two abelian categories ''A'' and ''B'' is a collection of functors from ''A'' to ''B'' together with a collection of morphisms that satisfy properties generalising those of derived functors. A universal δ-functor is a δ-functor satisfying a specific universal property related to extending morphisms beyond "degree 0". These notions were introduced by Alexander Grothendieck in his " Tohoku paper" to provide an appropriate setting for derived functors. Grothendieck 1957 In particular, derived functors are universal δ-functors. The terms homological δ-functor and cohomological δ-functor are sometimes used to distinguish between the case where the morphisms "go down" (''homological'') and the case where they "go up" (''cohomological''). In particular, one of these modifiers is always implicit, although often left unstated. Definition Given two abelian categories ''A'' and ''B'' a covariant cohomological δ-functor between ''A'' and ''B' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Delta Operator
In mathematics, a delta operator is a shift-equivariant linear operator Q\colon\mathbb \longrightarrow \mathbb /math> on the vector space of polynomials in a variable x over a field \mathbb that reduces degrees by one. To say that Q is shift-equivariant means that if g(x) = f(x + a), then :.\, In other words, if f is a "shift" of g, then Qf is also a shift of Qg, and has the same "shifting vector" a. To say that an operator ''reduces degree by one'' means that if f is a polynomial of degree n, then Qf is either a polynomial of degree n-1, or, in case n = 0, Qf is 0. Sometimes a ''delta operator'' is defined to be a shift-equivariant linear transformation on polynomials in x that maps x to a nonzero constant. Seemingly weaker than the definition given above, this latter characterization can be shown to be equivalent to the stated definition when \mathbb has characteristic zero, since shift-equivariance is a fairly strong condition. Examples * The forward difference operator ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]