HOME



picture info

Delta Scuti Variables
A Delta Scuti variable (sometimes termed dwarf cepheid when the V-band amplitude is larger than 0.3 mag.) is a class of pulsating star, comprising several sub-classes of object with A- or F-type spectra. The variables follow a period-luminosity relation in certain passbands like other standard candles such as Cepheids. and, together with classical cepheids, are important standard candles. They have been used to establish the distance to the Large Magellanic Cloud, globular clusters, open clusters, and the Galactic Center. The OGLE and MACHO surveys have detected nearly 3,000 Delta Scuti variables in the Large Magellanic Cloud. Typical brightness fluctuations of Delta Scuti variables are from 0.003 to 0.9 magnitudes in V over a period of a few hours, although the amplitude and period of the fluctuations can vary greatly. They are usually A0 to F5 type giant, subgiant, or main sequence stars. The high-amplitude Delta Scuti variables are also called AI Velorum stars, after the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Giant Star
A giant star has a substantially larger radius and luminosity than a main-sequence (or ''dwarf'') star of the same surface temperature. They lie above the main sequence (luminosity class V in the Yerkes spectral classification) on the Hertzsprung–Russell diagram and correspond to luminosity classes II and III. The terms ''giant'' and ''dwarf'' were coined for stars of quite different luminosity despite similar temperature or spectral type (namely K and M) by Ejnar Hertzsprung in 1905 or 1906. Giant stars have radii up to a few hundred times the Sun and luminosities over 10 times that of the Sun. Stars still more luminous than giants are referred to as supergiants and hypergiants. A hot, luminous main-sequence star may also be referred to as a giant, but any main-sequence star is properly called a dwarf, regardless of how large and luminous it is. Formation A star becomes a giant after all the hydrogen available for fusion at its core has been depleted and, as a r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Apparent Magnitude
Apparent magnitude () is a measure of the Irradiance, brightness of a star, astronomical object or other celestial objects like artificial satellites. Its value depends on its intrinsic luminosity, its distance, and any extinction (astronomy), extinction of the object's light caused by interstellar dust along the sightline, line of sight to the observer. Unless stated otherwise, the word ''magnitude'' in astronomy usually refers to a celestial object's apparent magnitude. The magnitude scale likely dates to before the ancient Ancient Greek astronomy#Astronomy in the Greco-Roman and Late Antique eras, Roman astronomer Ptolemy, Claudius Ptolemy, whose Star catalogue, star catalog popularized the system by listing stars from First-magnitude star, 1st magnitude (brightest) to 6th magnitude (dimmest). The modern scale was mathematically defined to closely match this historical system by Norman Robert Pogson, Norman Pogson in 1856. The scale is reverse logarithmic scale, logarithmic: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vega
Vega is the brightest star in the northern constellation of Lyra. It has the Bayer designation α Lyrae, which is Latinised to Alpha Lyrae and abbreviated Alpha Lyr or α Lyr. This star is relatively close at only from the Sun, and one of the most luminous stars in the Sun's neighborhood. It is the fifth-brightest star in the night sky, and the second-brightest star in the northern celestial hemisphere, after Arcturus. Vega has been extensively studied by astronomers, leading it to be termed "arguably the next most important star in the sky after the Sun". Vega was the northern pole star around 12,000 BCE and will be so again around the year 13,727, when its declination will be . Vega was the first star other than the Sun to have its image and spectrum photographed. It was one of the first stars whose distance was estimated through parallax measurements. Vega has functioned as the baseline for calibrating the photometric brightness scale and was one of the stars ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Denebola
Denebola is the second-brightest individual star in the zodiac constellation of Leo.The two components of the γ Leonis double star, which are unresolved to the naked eye, have a combined magnitude brighter than it. It is the easternmost of the bright stars of Leo. It has the Bayer designation Beta Leonis or β Leonis, which are abbreviated Beta Leo or β Leo. Denebola is an A-type main sequence star with 75% more mass than the Sun and 15 times the Sun's luminosity. Based on parallax measurements from the Hipparcos astrometry satellite, the star is at a distance of from the Sun. Its apparent visual magnitude is 2.14, making it readily visible to the naked eye. Denebola is a Delta Scuti type variable star, meaning its luminosity varies very slightly over a period of a few hours. Nomenclature ''β Leonis'' ( Latinised to ''Beta Leonis'') is the star's Bayer designation. In Johann Bayer's ''Uranometria'' (1603), it was designated β (Beta) as the second-brightest sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Altair
Altair is the brightest star in the constellation of Aquila (constellation), Aquila and the list of brightest stars, twelfth-brightest star in the night sky. It has the Bayer designation Alpha Aquilae, which is Latinisation of names, Latinised from α Aquilae and abbreviated Alpha Aql or α Aql. Altair is an A-type main-sequence star, A-type main-sequence star with an apparent visual magnitude of 0.77 and is one of the vertices of the Summer Triangle Asterism (astronomy), asterism; the other two vertices are marked by Deneb and Vega. It is located at a distance of from the Sun. Altair is currently in the G-cloud—a nearby interstellar cloud formed from an accumulation of gas and dust. Altair rotates rapidly, with a velocity at the equator of approximately 286 km/s.From values of ''v'' sin ''i'' and ''i'' in the second column of Table 1, Monnier et al. 2007. This is a significant fraction of the star's estimated breakup speed of 400 km/s. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Delta Scuti
Delta Scuti, Latinized from δ Scuti, is a variable star in the southern constellation Scutum. With an apparent visual magnitude that fluctuates around 4.72, it is the fifth-brightest star in this small and otherwise undistinguished constellation. Analysis of the parallax measurements place this star at a distance of about from Earth. It is drifting closer with a radial velocity of −43 km/s. Variability In 1900, William W. Campbell and William H. Wright used the Mills spectrograph at the Lick Observatory to determine that this star has a variable radial velocity. The period of this variability as well as 0.2 magnitude changes in luminosity demonstrated in 1935 that the variability was intrinsic, rather than being the result of a spectroscopic binary. In 1938, a secondary period was discovered and a pulsation theory was proposed to model the variation. Since then, observation of Delta Scuti has shown that it pulsates in multiple discrete radial and non-radi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Instability Strip
The unqualified term instability strip usually refers to a region of the Hertzsprung–Russell diagram largely occupied by several related classes of pulsating variable stars: Delta Scuti variables, SX Phoenicis variables, and rapidly oscillating Ap stars (roAps) near the main sequence; RR Lyrae variables where it intersects the horizontal branch; and the Cepheid variables where it crosses the supergiants. RV Tauri variables are also often considered to lie on the instability strip, occupying the area to the right of the brighter Cepheids (at lower temperatures), since their stellar pulsations are attributed to the same mechanism. Position on the HR diagram The Hertzsprung–Russell diagram plots the real luminosity of stars against their effective temperature (their color, given by the temperature of their photosphere). The instability strip intersects the main sequence, (the prominent diagonal band that runs from the upper left to the lower right) in the region of A an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Blue Straggler
A blue straggler is a type of star that is more luminous and bluer than expected. Typically identified in a stellar cluster, they have a higher effective temperature than the main sequence turnoff point for the cluster, where ordinary stars begin to evolve towards the red giant branch. Blue stragglers were first discovered by Allan Sandage in 1953 while performing photometry of the stars in the globular cluster M3. Description Standard theories of stellar evolution hold that the position of a star on the Hertzsprung–Russell diagram should be determined almost entirely by the initial mass of the star and its age. In a cluster, stars all formed at approximately the same time, and thus in an H–R diagram for a cluster, all stars should lie along a clearly defined curve set by the age of the cluster, with the positions of individual stars on that curve determined solely by their initial mass. With masses two to three times that of the rest of the main-sequence cluster stars, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Population II
In 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations. In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926. Baade observed that bluer stars were strongly associated with the spiral arms, and yellow stars dominated near the central galactic bulge and within globular star clusters. Two main divisions were deemed ''populationI'' and ''populationII stars'', with another newer, hypothetical division called ''populationIII'' added in 1978. Among the population types, significant differences were found with their individual observed stellar spectra. These were later shown to be very important and were possibly related to star formation, observed kinematics, stellar age, and even galaxy evolution in both spiral and elliptical galaxies. These three simple population classes usefully divided stars by their chemical composition, or '' metallicity''. In astrophysics n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SX Phoenicis Variables
An SX Phoenicis variable is a type of variable star. These stars exhibit a short period pulsation behavior that varies on time scales of 0.03–0.08 days (0.7–1.9 hours). They have spectral classifications in the range A2-F5 and vary in magnitude by up to 0.7. Compared to the Sun, these stars have a lower metallicity, which means they have a reduced abundance of elements other than hydrogen and helium. They also have relatively high space velocity and low luminosities for stars of their stellar classification. These properties distinguish the SX Phoenicis variables from their cousins, the Delta Scuti variables. The latter have longer periods, higher metallicity and large amplitudes. SX Phoenicis variables are found primarily in globular clusters and galactic halos. The variability cycle has a period-luminosity relation. All known SX Phoenicis variables in globular clusters are blue straggler stars. These are stars that appear more blue (having a higher temperature) than the main ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]