De Finetti's Game
In a thought experiment proposed by the Italian probabilist Bruno de Finetti in order to justify Bayesian probability, an array of wagers is coherent precisely if it does not expose the wagerer to certain loss regardless of the outcomes of events on which they are wagering, even if their opponent makes the most judicious choices. Operational subjective probabilities as wagering odds One must set the price of a promise to pay $1 if John Smith wins tomorrow's election, and $0 otherwise. One knows that one's opponent will be able to choose either to buy such a promise from one at the price one has set, or require one to buy such a promise from them, still at the same price. In other words: Player A sets the odds, but Player B decides which side of the bet to take. The price one sets is the "operational subjective probability" that one assigns to the proposition on which one is betting. If one decides that John Smith is 12.5% likely to win—an arbitrary valuation—one might then ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thought Experiment
A thought experiment is a hypothetical situation in which a hypothesis, theory, or principle is laid out for the purpose of thinking through its consequences. History The ancient Greek ''deiknymi'' (), or thought experiment, "was the most ancient pattern of mathematical proof", and existed before Euclidean mathematics, where the emphasis was on the conceptual, rather than on the experimental part of a thought-experiment. Johann Witt-Hansen established that Hans Christian Ørsted was the first to use the German term ' (lit. thought experiment) circa 1812. Ørsted was also the first to use the equivalent term ' in 1820. By 1883 Ernst Mach used the term ' in a different way, to denote exclusively the conduct of a experiment that would be subsequently performed as a by his students. Physical and mental experimentation could then be contrasted: Mach asked his students to provide him with explanations whenever the results from their subsequent, real, physical experiment differed ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bruno De Finetti
Bruno de Finetti (13 June 1906 – 20 July 1985) was an Italian probabilist statistician and actuary, noted for the "operational subjective" conception of probability. The classic exposition of his distinctive theory is the 1937 "La prévision: ses lois logiques, ses sources subjectives," which discussed probability founded on the coherence of betting odds and the consequences of exchangeability. Life De Finetti was born in Innsbruck, Austria, and studied mathematics at Politecnico di Milano. He graduated in 1927 writing his thesis under the supervision of Giulio Vivanti. After graduation, he worked as an actuary and a statistician at ''Istituto Nazionale di Statistica'' ( National Institute of Statistics) in Rome and, from 1931, the Trieste insurance company Assicurazioni Generali. In 1936 he won a competition for Chair of Financial Mathematics and Statistics, but was not nominated due to a fascist law barring access to unmarried candidates; he was appointed as ordinary profess ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayesian Probability
Bayesian probability is an Probability interpretations, interpretation of the concept of probability, in which, instead of frequentist probability, frequency or propensity probability, propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with Hypothesis, hypotheses; that is, with propositions whose truth value, truth or falsity is unknown. In the Bayesian view, a probability is assigned to a hypothesis, whereas under frequentist inference, a hypothesis is typically tested without being assigned a probability. Bayesian probability belongs to the category of evidential probabilities; to evaluate the probability of a hypothesis, the Bayesian probabilist specifies a prior probability. This, in turn, is then updated to a posterior probability in the light of new, re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dutch Book
In gambling, a Dutch book or lock is a set of odds and bets, established by the bookmaker, that ensures that the bookmaker will profit—at the expense of the gamblers—regardless of the outcome of the event (a horse race, for example) on which the gamblers bet. It is associated with probabilities implied by the odds not being coherent. In economics, the term usually refers to a sequence of trades that would leave one party strictly worse off and another strictly better off. Typical assumptions in consumer choice theory rule out the possibility that anyone can be Dutch-booked. In philosophy it is used to explore degrees of certainty of beliefs. There is no agreement on the etymology of the term.Hajek, Alan ''Dutch Book Arguments'', Chapter 7 in The Oxford Handbook of Rational and Social Choice, ed. Paul Anand, Prasanta Pattanaik, and Clemens Puppe, 173-195, Oxford University Press Gambling The main point of the Dutch book argument is to show that rational people must have ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
No-win Situation
A no-win situation, also called a lose-lose situation, is one where a person has choices, but no choice leads to a net gain. For example, if an executioner offers the condemned the choice of death by being hanged, shot, or poisoned, all choices lead to death; the condemned is in a no-win situation. In game theory In game theory, a "no-win" situation is a circumstance in which no player benefits from any outcome, hence ultimately losing the match. This may be because of any or all of the following: * Unavoidable or unforeseeable circumstances causing the situation to change after decisions have been made. This is common in text adventures. * ''Zugzwang'', as in chess, when any move a player chooses makes them worse off than before such as losing a piece or being checkmated. * A situation in which the player has to accomplish two mutually dependent tasks each of which must be completed before the other or that are mutually exclusive (a Catch-22). * Ignorance of other players' action ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mutually Exclusive Events
In logic and probability theory, two events (or propositions) are mutually exclusive or disjoint if they cannot both occur at the same time. A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails, but not both. In the coin-tossing example, both outcomes are, in theory, collectively exhaustive, which means that at least one of the outcomes must happen, so these two possibilities together exhaust all the possibilities. However, not all mutually exclusive events are collectively exhaustive. For example, the outcomes 1 and 4 of a single roll of a six-sided die are mutually exclusive (both cannot happen at the same time) but not collectively exhaustive (there are other possible outcomes; 2,3,5,6). Logic In logic, two mutually exclusive propositions are propositions that logically cannot be true in the same sense at the same time. To say that more than two propositions are mutually exclusive, depending on the context, means that one ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability Axioms
The Kolmogorov axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probability cases. An alternative approach to formalising probability, favoured by some Bayesians, is given by Cox's theorem. Axioms The assumptions as to setting up the axioms can be summarised as follows: Let (\Omega, F, P) be a measure space with P(E) being the probability of some event E'','' and P(\Omega) = 1. Then (\Omega, F, P) is a probability space, with sample space \Omega, event space F and probability measure P. First axiom The probability of an event is a non-negative real number: :P(E)\in\mathbb, P(E)\geq 0 \qquad \forall E \in F where F is the event space. It follows that P(E) is always finite, in contrast with more general measure theory. Theories which assign negative probability relax the first axiom. Second axiom This ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix is denoted , , or . The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e & f \\ g & h & i \end= aei + bfg + cdh - ceg - bdi - afh. The determinant of a matrix can be defined in several equivalent ways. Leibniz formula expresses the determinant as a sum of signed products of matrix entries such that each summand is the product of different entries, and the number of these summands is n!, the factorial of (t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conditional Probability
In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occurring with some sort of relationship with another event A. In this event, the event B can be analyzed by a conditional probability with respect to A. If the event of interest is and the event is known or assumed to have occurred, "the conditional probability of given ", or "the probability of under the condition ", is usually written as or occasionally . This can also be understood as the fraction of probability B that intersects with A: P(A \mid B) = \frac. For example, the probability that any given person has a cough on any given day may be only 5%. But if we know or assume that the person is sick, then they are much more likely to be coughing. For example, the conditional probability that someone unwell (sick) is coughing might be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kentucky Derby
The Kentucky Derby is a horse race held annually in Louisville, Kentucky, United States, almost always on the first Saturday in May, capping the two-week-long Kentucky Derby Festival. The competition is a Grade I stakes race for three-year-old Thoroughbreds at a distance of at Churchill Downs. Colts and geldings carry and fillies . It is dubbed "The Run for the Roses", stemming from the blanket of roses draped over the winner. It is also known in the United States as "The Most Exciting Two Minutes in Sports" or "The Fastest Two Minutes in Sports" because of its approximate duration. It is the first leg of the American Triple Crown, followed by the Preakness Stakes, and then the Belmont Stakes. Of the three Triple Crown races, the Kentucky Derby has the distinction of having been run uninterrupted since its inaugural race in 1875. The race was rescheduled to September 2020 due to the COVID-19 pandemic. The Preakness and Belmont Stakes races had taken hiatuses in 1891–18 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ante-post Betting
In horse racing and greyhound racing, an ante-post bet is a bet placed before the horse/greyhound racing course's betting market has opened, and is made on the expectation that the price of the horse/greyhound is presently more favorable than it will be when the course's market opens. Generally, this includes any bet placed before the day of the race. Ante-post betting, unlike starting price In horse racing, the starting price (SP) is the odds prevailing on a particular horse in the on-course fixed-odds betting market at the time a race begins. The method by which SPs are set for each runner varies in different countries but is genera ... betting, carries the additional risk that the original bet will be forfeited, rather than returned, if the wagered horse fails to run.Hammond (1992), p. 19. The ''ante'' in ante-post is derived from the Latin ''ante'' (meaning "before"), but the ''post'' is not the Latin ''post'' (meaning "after"). Instead, it is derived from the nineteenth centu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inclusion–exclusion Principle
In combinatorics, a branch of mathematics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as : , A \cup B, = , A, + , B, - , A \cap B, where ''A'' and ''B'' are two finite sets and , ''S'', indicates the cardinality of a set ''S'' (which may be considered as the number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice. The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection. The inclusion-exclusion principle, being a generalization of the two-set case, is perhaps more clearly seen in the case of three sets, which for the sets ''A'', ''B'' and ''C'' is given by :, A \cup B \cup C, = , A, + , B, + , C, - , A \cap B, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |