Dating Methodology (archaeology)
Chronological dating, or simply dating, is the process of attributing to an object or event a date in the past, allowing such object or event to be located in a previously established chronology. This usually requires what is commonly known as a "dating method". Several dating methods exist, depending on different criteria and techniques, and some very well known examples of disciplines using such techniques are, for example, history, archaeology, geology, paleontology, astronomy and even forensic science, since in the latter it is sometimes necessary to investigate the moment in the past during which the death of a cadaver occurred. These methods are typically identified as absolute, which involves a specified date or date range, or relative, which refers to dating which places artifacts or events on a timeline relative to other events and/or artifacts. Other markers can help place an artifact or event in a chronology, such as nearby writings and stratigraphic markers. Absolut ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chronology
Chronology (from Latin ''chronologia'', from Ancient Greek , ''chrónos'', "time"; and , '' -logia'') is the science of arranging events in their order of occurrence in time. Consider, for example, the use of a timeline or sequence of events. It is also "the determination of the actual temporal sequence of past events".Memidex/WordNet, "chronology,memidex.com (accessed September 25, 2010). Chronology is a part of periodization. It is also a part of the discipline of history including earth history, the earth sciences, and study of the geologic time scale. Related fields Chronology is the science of locating historical events in time. It relies upon chronometry, which is also known as timekeeping, and historiography, which examines the writing of history and the use of historical methods. Radiocarbon dating estimates the age of formerly living things by measuring the proportion of carbon-14 isotope in their carbon content. Dendrochronology estimates the age of trees by corre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paleopalynology
Palynology is the "study of dust" (from grc-gre, παλύνω, palynō, "strew, sprinkle" and ''-logy'') or of "particles that are strewn". A classic palynologist analyses particulate samples collected from the air, from water, or from deposits including sediments of any age. The condition and identification of those particles, organic and inorganic, give the palynologist clues to the life, environment, and energetic conditions that produced them. The term is commonly used to refer to a subset of the discipline, which is defined as "the study of microscopic objects of macromolecular organic composition (i.e., compounds of carbon, hydrogen, nitrogen and oxygen), not capable of dissolution in hydrochloric or hydrofluoric acids". It is the science that studies contemporary and fossil palynomorphs (paleopalynology), including pollen, spores, orbicules, dinocysts, acritarchs, chitinozoans and scolecodonts, together with particulate organic matter (POM) and kerogen found in sedimenta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Forensic Palynology
Forensic palynology is a subdiscipline of palynology (the study of pollen grains, spores, etc.), that aims to prove or disprove a relationship among objects, people, and places that may pertain to both criminal and civil cases. Pollen can reveal where a person or object has been, because regions of the world, countries, and even different parts of a single garden will have a distinctive pollen assemblage. Pollen evidence can also reveal the season in which a particular object picked up the pollen. Palynology is the study of palynomorphs - microscopic structures of both animal and plant origin that are resistant to decay. This includes spermatophyte pollen, as well as spores (fungi, bryophytes, and ferns), dinoflagellates, and various other organic microorganisms - both living and fossilized. There are a variety of ways in which the study of these microscopic, walled particles can be applied to criminal forensics. In areas such as New Zealand, where the demand for this field is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Palynology
Palynology is the "study of dust" (from grc-gre, παλύνω, palynō, "strew, sprinkle" and '' -logy'') or of "particles that are strewn". A classic palynologist analyses particulate samples collected from the air, from water, or from deposits including sediments of any age. The condition and identification of those particles, organic and inorganic, give the palynologist clues to the life, environment, and energetic conditions that produced them. The term is commonly used to refer to a subset of the discipline, which is defined as "the study of microscopic objects of macromolecular organic composition (i.e., compounds of carbon, hydrogen, nitrogen and oxygen), not capable of dissolution in hydrochloric or hydrofluoric acids". It is the science that studies contemporary and fossil palynomorphs (paleopalynology), including pollen, spores, orbicules, dinocysts, acritarchs, chitinozoans and scolecodonts, together with particulate organic matter (POM) and kerogen found in sedimen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nitrogen Dating
Nitrogen dating is a form of relative dating which relies on the reliable breakdown and release of amino acids from bone samples to estimate the age of the object. For human bones, the assumption of about 5% nitrogen in the bone, mostly in the form of collogen, allows fairly consistent dating techniques. Compared to other dating techniques, Nitrogen dating can be unreliable because leaching from bone is dependent on temperature, soil pH, ground water, and the presence of microorganism that digest nitrogen rich elements, like collagen. Some studies compare nitrogen dating results with dating results from methods like fluorine absorption dating Fluorine absorption dating is a method used to determine the amount of time an object has been underground. Fluorine absorption dating can be carried out based on the fact that groundwater contains fluoride ions. Items such as bone that are in th ... to create more accurate estimates. Though some situations, like thin porous bones mi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Morphology (archaeology)
In archaeology, morphology is the study of the shape of artefacts and ecofacts. Morphology is a major consideration in grouping artefacts into period styles and, despite modern techniques like radiocarbon dating, remains a crucial tool in the identification and dating not only of works of art but all classes of archaeological artefact, including purely functional ones (ignoring the question of whether purely functional artefacts exist). The term morphology ("study of shapes", from the Greek) is more often used for this. Morphological analyses of many individual artefacts are used to construct typologies for different types of artefact, and by the technique of seriation a relative dating based on shape and style for a site or group of sites is achieved where scientific absolute dating techniques cannot be used, in particular where only stone, ceramic or metal artefacts or remains are available, which is often the case. That artefacts such as pottery very often survive onl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Melt Inclusions
A melt inclusion is a small parcel or "blobs" of melt(s) that is entrapped by crystals growing in magma and eventually forming igneous rocks. In many respects it is analogous to a fluid inclusion within magmatic hydrothermal systems. Melt inclusions tend to be microscopic in size and can be analyzed for volatile contents that are used to interpret trapping pressures of the melt at depth. Characteristics Melt inclusions are generally small - most are less than 80 micrometres across (a micrometre is one thousandth of a millimeter, or about 0.00004 inches). They may contain a number of different constituents, including glass (which represents melt that has been quenched by rapid cooling), small crystals and a separate vapour-rich bubble. They occur in the crystals that can be found in igneous rocks, such as for example quartz, feldspar, olivine, pyroxene, nepheline, magnetite, perovskite and apatite. Melt inclusions can be found in both volcanic and plutonic rocks. In addition, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oxygen Isotope Ratio Cycle
Oxygen isotope ratio cycles are cyclical variations in the ratio of the abundance of oxygen with an atomic mass of 18 to the abundance of oxygen with an atomic mass of 16 present in some substances, such as polar ice or calcite in ocean core samples, measured with the isotope fractionation. The ratio is linked to water temperature of ancient oceans, which in turn reflects ancient climates. Cycles in the ratio mirror climate changes in geologic history. Isotopes of oxygen Oxygen (chemical symbol O) has three naturally occurring isotopes: 16O, 17O, and 18O, where the 16, 17 and 18 refer to the atomic mass. The most abundant is 16O, with a small percentage of 18O and an even smaller percentage of 17O. Oxygen isotope analysis considers only the ratio of 18O to 16O present in a sample. The calculated ratio of the masses of each present in the sample is then compared to a standard, which can yield information about the temperature at which the sample was formed - see Proxy (climat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Marine Isotope Stage
Marine isotope stages (MIS), marine oxygen-isotope stages, or oxygen isotope stages (OIS), are alternating warm and cool periods in the Earth's paleoclimate, deduced from oxygen isotope data reflecting changes in temperature derived from data from deep sea core samples. Working backwards from the present, which is MIS 1 in the scale, stages with even numbers have high levels of oxygen-18 and represent cold glacial periods, while the odd-numbered stages are lows in the oxygen-18 figures, representing warm interglacial intervals. The data are derived from pollen and foraminifera (plankton) remains in drilled marine sediment cores, sapropels, and other data that reflect historic climate; these are called proxies. The MIS timescale was developed from the pioneering work of Cesare Emiliani in the 1950s, and is now widely used in archaeology and other fields to express dating in the Quaternary period (the last 2.6 million years), as well as providing the fullest and best data ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lichenometry
In archaeology, palaeontology, and geomorphology, lichenometry is a geomorphic method of geochronologic dating that uses lichen growth to determine the age of exposed rock, based on a presumed specific rate of increase in radial size over time.Lichens in relation to management issues in the Sierra Nevada national parks, McCune, B., J. Grenon, and E. Martin, L. Mutch, Sierra Nevada Network, Cooperative agreement CA9088A0008. Oregon State University, Corvallis, Oregon, and Sequoia and Kings Canyon National Parks, Three Rivers, California/ref> Measuring the diameter of the largest lichen of a species on a rock surface can therefore be used to determine the length of time the rock has been exposed. Lichen can be preserved on old rock faces for up to 10,000 years, providing the maximum age limit of the technique, though it is most accurate (within 10% error) when applied to surfaces that have been exposed for less than 1,000 years. (The practical limit of the technique might be 4,000 t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Law Of Superposition
The law of superposition is an axiom that forms one of the bases of the sciences of geology, archaeology, and other fields pertaining to geological stratigraphy. In its plainest form, it states that in undeformed stratigraphic sequences, the oldest strata will lie at the bottom of the sequence, while newer material stacks upon the surface to form new deposits over time. This is paramount to stratigraphic dating, which requires a set of assumptions, including that the law of superposition holds true and that an object cannot be older than the materials of which it is composed. To illustrate the practical applications of superposition in scientific inquiry, sedimentary rock that has not been deformed by more than 90° will exhibit the oldest layers on the bottom, thus enabling paleontologists and paleobotanists to identify the relative ages of any fossils found within the strata, with the remains of the most archaic lifeforms confined to the lowest. These findings can inform th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Law Of Included Fragments
The law of included fragments is a method of relative dating in geology. Essentially, this law states that clasts in a rock are older than the rock itself. One example of this is a xenolith, which is a fragment of country rock that fell into passing magma as a result of stoping. Another example is a derived fossil, which is a fossil that has been eroded from an older bed and redeposited into a younger one.D. Armstrong, F. Mugglestone, R. Richards and F. Stratton, OCR AS and A2 Geology, Pearson Education Limited, 2008, p. 276 This is a restatement of Charles Lyell's original principle of inclusions and components from his 1830 to 1833 multi-volume ''Principles of Geology'', which states that, with sedimentary rocks, if inclusions (or clasts) are found in a formation, then the inclusions must be older than the formation that contains them. For example, in sedimentary rocks, it is common for gravel from an older formation to be ripped up and included in a newer layer. A similar sit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |