HOME
*





Darcy's Law For Multiphase Flow
Morris Muskat et al.Muskat M. and Meres M.W. 1936. The Flow of Heterogeneous Fluids Through Porous Media. Paper published in J. Appl. Phys. 1936, 7, pp 346–363. https://dx.doi.org/10.1063/1.1745403Muskat M. and Wyckoff R.D. and Botset H.G. and Meres M.W. 1937. Flow of Gas-liquid Mixtures through Sands. Published in Transactions of the AIME 1937, 123, pp 69–96. SPE document ID is SPE-937069-G. https://dx.doi.org/10.2118/937069-G developed the governing equations for multiphase flow (one vector equation for each fluid phase) in porous media as a generalisation of Darcy's equation (or Darcy's law) for water flow in porous media. The porous media are usually sedimentary rocks such as clastic rocks (mostly sandstone) or carbonate rocks. :\mathbf_a = -\mu_a^ K_ \mathbf \cdot \left( \nabla P - \rho_a \mathbf \right) where a = w, o, g The present fluid phases are water, oil and gas, and they are represented by the subscript a = w,o,g respectively. The gravitational acceleration ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morris Muskat
Morris Muskat (21 April 1906 – 20 June 1998) was an American petroleum engineer. Muskat refined Darcy's equation for single phase flow, and this change made it suitable for the petroleum industry. Based on experimental results worked out by his colleagues, Muskat and Milan W. Meres also generalized Darcy's law to cover multiphase flow of water, oil and gas in the porous medium of a petroleum reservoir. The generalized flow equation provides the analytical foundation for reservoir engineering that exists to this day. Early life and career Muskat was born in Riga, Russian Empire. He came to the United States with his family in 1911, and became an American citizen in 1914. Muskat attended Marietta College and Ohio State University, then taught physics at Bowling Green University. He earned his doctorate in physics from the California Institute of Technology in 1929. After graduating from Caltech, Muskat joined Gulf Research & Development Company where he started as a Researc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically, density is defined as mass divided by volume: : \rho = \frac where ''ρ'' is the density, ''m'' is the mass, and ''V'' is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume, although this is scientifically inaccurate – this quantity is more specifically called specific weight. For a pure substance the density has the same numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity and packaging. Osmium and iridium are the densest known elements at standard conditions for temperature and pressure. To simplify comparisons of density across different s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Extraction Of Petroleum
Petroleum is a fossil fuel that can be drawn from beneath the earth's surface. Reservoirs of petroleum was formed through the mixture of plants, algae, and sediments in shallow seas under high pressure. Petroleum is mostly recovered from oil drilling. Seismic surveys and other methods are used to locate oil reservoirs. Oil rigs and oil platforms are used to drill long holes into the earth to create an oil well and extract petroleum. After extraction, oil is refined to make gasoline and other products such as tires and refrigerators. Extraction of petroleum can be dangerous and have led to oil spills. Locating the oil field Geologists and geophysicists use seismic surveys to search for geological structures that may form oil reservoirs. The "classic" method includes making an underground explosion nearby and observing the seismic response, which provides information about the geological structures underground. However, "passive" methods that extract information from naturally occ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Water Injection (oil Production)
In the oil industry, waterflooding or water injection is where water is injected into the oil reservoir, to maintain the pressure (also known as voidage replacement), or to drive oil towards the wells, and thereby increase production. Water injection wells may be located on- and offshore, to increase oil recovery from an existing reservoir. Normally only 30% of the oil in a reservoir can be extracted, but water injection increases the recovery (known as the recovery factor) and maintains the production rate of a reservoir over a longer period. Waterflooding began accidentally in Pithole, Pennsylvania by 1865. Waterflooding became common in Pennsylvania in the 1880s. Sources of injection water Most sources of bulk water can be used for injection. The following sources of water are used for recovery of oil: Produced water is often used as an injection fluid. This reduces the potential of causing formation damage due to incompatible fluids, although the risk of scaling or corr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Strike And Dip
Strike and dip is a measurement convention used to describe the orientation, or attitude, of a planar geologic feature. A feature's strike is the azimuth of an imagined horizontal line across the plane, and its dip is the angle of inclination measured downward from horizontal. They are used together to measure and document a structure's characteristics for study or for use on a geologic map. A feature's orientation can also be represented by dip and dip direction, using the azimuth of the dip rather than the strike value. Linear features are similarly measured with trend and plunge, where "trend" is analogous to dip direction and "plunge" is the dip angle. Strike and dip are measured using a compass and a clinometer. A compass is used to measure the feature's strike by holding the compass horizontally against the feature. A clinometer measures the features dip by recording the inclination perpendicular to the strike. These can be done separately, or together using a tool such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cross Bedding
In geology, cross-bedding, also known as cross-stratification, is layering within a stratum and at an angle to the main bedding plane. The sedimentary structures which result are roughly horizontal units composed of inclined layers. The original depositional layering is tilted, such tilting not being the result of post-depositional deformation. Cross-beds or "sets" are the groups of inclined layers, which are known as cross-strata. Cross-bedding forms during deposition on the inclined surfaces of bedforms such as ripples and dunes; it indicates that the depositional environment contained a flowing medium (typically water or wind). Examples of these bedforms are ripples, dunes, anti-dunes, sand waves, hummocks, bars, and delta slopes.Collinson, J.D., Thompson, D.B., 1989, Sedimentary Structures (2nd ed): Academic Division of Unwin Hyman Ltd, Winchester, MA, XXX p. Environments in which water movement is fast enough and deep enough to develop large-scale bed forms fall into three ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lamination (geology)
In geology, lamination () is a small-scale sequence of fine layers (laminae; singular: lamina) that occurs in sedimentary rocks. Laminae are normally smaller and less pronounced than bedding. Lamination is often regarded as planar structures one centimetre or less in thickness, whereas bedding layers are greater than one centimetre. However, structures from several millimetres to many centimetres have been described as laminae. A single sedimentary rock can have both laminae and beds. Description Lamination consists of small differences in the type of sediment that occur throughout the rock. They are caused by cyclic changes in the supply of sediment. These changes can occur in grain size, clay percentage, microfossil content, organic material content or mineral content and often result in pronounced differences in colour between the laminae. Weathering can make the differences even more clear. Lamination can occur as parallel structures (parallel lamination) or in different set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homogeneity And Heterogeneity
Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous is distinctly nonuniform in at least one of these qualities. Heterogeneous Mixtures, in chemistry, is where certain elements are unwillingly combined and, when given the option, will separate. Etymology and spelling The words ''homogeneous'' and ''heterogeneous'' come from Medieval Latin ''homogeneus'' and ''heterogeneus'', from Ancient Greek ὁμογενής (''homogenēs'') and ἑτερογενής (''heterogenēs''), from ὁμός (''homos'', “same”) and ἕτερος (''heteros'', “other, another, different”) respectively, followed by γένος (''genos'', “kind”); - ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parameter
A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc. ''Parameter'' has more specific meanings within various disciplines, including mathematics, computer programming, engineering, statistics, logic, linguistics, and electronic musical composition. In addition to its technical uses, there are also extended uses, especially in non-scientific contexts, where it is used to mean defining characteristics or boundaries, as in the phrases 'test parameters' or 'game play parameters'. Modelization When a system is modeled by equations, the values that describe the system are called ''parameters''. For example, in mechanics, the masses, the dimensions and shapes (for solid bodies), the densities and the viscosities ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reservoir Modeling
In the oil and gas industry, reservoir modeling involves the construction of a computer model of a petroleum reservoir, for the purposes of improving estimation of reserves and making decisions regarding the development of the field, predicting future production, placing additional wells, and evaluating alternative reservoir management scenarios. A reservoir model represents the physical space of the reservoir by an array of discrete cells, delineated by a grid which may be regular or irregular. The array of cells is usually three-dimensional, although 1D and 2D models are sometimes used. Values for attributes such as porosity, permeability and water saturation are associated with each cell. The value of each attribute is implicitly deemed to apply uniformly throughout the volume of the reservoir represented by the cell. Types of reservoir model Reservoir models typically fall into two categories: * Geological models are created by geologists and geophysicists and aim to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Simulation
Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics (computational physics), astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering. Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology and to estimate the performance of systems too complex for analytical solutions. Computer simulations are realized by running computer programs that can be either small, running almost instantly on small devices, or large ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Imbibition
Imbibition is a special type of diffusion that takes place when liquid is absorbed by solids-colloids causing an increase in volume. Water surface potential movement takes place along a concentration gradient; some dry materials absorb water. A gradient between the absorbent and the liquid is essential for imbibition. For a substance to imbibe a liquid, there must first be some attraction between them. Imbibition occurs when a wetting fluid displaces a non-wetting fluid, the opposite of drainage in which a non-wetting phase displaces the wetting fluid. The two processes are governed by different mechanisms. Imbibition is also a type of diffusion since water movement is along the concentration gradient. The seeds and other such materials have almost no water hence they absorb water easily. Water potential gradient between the absorbent and liquid imbibed is essential for imbibition. Examples One example of imbibition in nature is the absorption of water by hydrophilic colloids. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]