Darboux's Theorem
In differential geometry, a field in mathematics, Darboux's theorem is a theorem providing a normal form for special classes of differential 1-forms, partially generalizing the Frobenius integration theorem. It is named after Jean Gaston Darboux who established it as the solution of the Pfaff problem. It is a foundational result in several fields, the chief among them being symplectic geometry. Indeed, one of its many consequences is that any two symplectic manifolds of the same dimension are locally symplectomorphic to one another. That is, every 2n -dimensional symplectic manifold can be made to look locally like the linear symplectic space \mathbb^n with its canonical symplectic form. There is also an analogous consequence of the theorem applied to contact geometry. Statement Suppose that \theta is a differential 1-form on an ''n ''-dimensional manifold, such that \mathrm \theta has constant rank ''p ''. Then * if \theta \wedge \left(\mathrm\theta\right)^p = 0 e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frobenius Theorem (differential Topology)
In mathematics, Frobenius' theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an overdetermined system of first-order homogeneous linear partial differential equations. In modern differential geometry, geometric terms, given a family of vector fields, the theorem gives necessary and sufficient integrability conditions for the existence of a foliation by maximal integral manifolds whose tangent bundles are spanned by the given vector fields. The theorem generalizes the Picard–Lindelöf theorem, existence theorem for ordinary differential equations, which guarantees that a single vector field always gives rise to integral curves; Frobenius gives compatibility conditions under which the integral curves of ''r'' vector fields mesh into coordinate grids on ''r''-dimensional integral manifolds. The theorem is foundational in differential topology and Differentiable manifold, calculus on manifolds. Contact geometry studies 1-forms ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metric Tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point of is a bilinear form defined on the tangent space at (that is, a bilinear function that maps pairs of tangent vectors to real numbers), and a metric field on consists of a metric tensor at each point of that varies smoothly with . A metric tensor is ''positive-definite'' if for every nonzero vector . A manifold equipped with a positive-definite metric tensor is known as a Riemannian manifold. Such a metric tensor can be thought of as specifying ''infinitesimal'' distance on the manifold. On a Riemannian manifold , the length of a smooth curve between two points and can be defined by integration, and the distance between and can be defined as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Curvature Of Riemannian Manifolds
In mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the ''Riemann curvature tensor''. Similar notions have found applications everywhere in differential geometry of surfaces and other objects. The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications. Ways to express the curvature of a Riemannian manifold Riemann curvature tensor The curvature of a Riemannian manifold can be described in various ways; the most standard one is the curvature tensor, given in terms of a Levi-Civita connection (or covariant differentiation) and Lie bracket by the following formula: R(u,v)w=\nabla_u\nabla_v w - \nabla_v \nabla_u w -\nabla_ w . Here is a linear transformation of the tange ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemannian Geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smoothly from point to point). This gives, in particular, local notions of angle, arc length, length of curves, surface area and volume. From those, some other global quantities can be derived by integral, integrating local contributions. Riemannian geometry originated with the vision of Bernhard Riemann expressed in his inaugural lecture "" ("On the Hypotheses on which Geometry is Based"). It is a very broad and abstract generalization of the differential geometry of surfaces in Three-dimensional space, R3. Development of Riemannian geometry resulted in synthesis of diverse results concerning the geometry of surfaces and the behavior of geodesics on them, with techniques that can be applied to the study of differentiable manifolds of higher ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Darboux Frame
In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non- umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux. Darboux frame of an embedded curve Let ''S'' be an oriented surface in three-dimensional Euclidean space E3. The construction of Darboux frames on ''S'' first considers frames moving along a curve in ''S'', and then specializes when the curves move in the direction of the principal curvatures. Definition At each point of an oriented surface, one may attach a unit normal vector in a unique way, as soon as an orientation has been chosen for the normal at any particular fixed point. If is a curve in , parametrized by arc length, then the Darboux frame of is defined by : \mathbf(s) = \gamma'(s), (the ''unit tangent'') : \ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer Science+Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, op ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Moser's Trick
In differential geometry, a branch of mathematics, the Moser's trick (or Moser's argument) is a method to relate two differential forms \alpha_0 and \alpha_1 on a smooth manifold by a diffeomorphism \psi \in \mathrm(M) such that \psi^* \alpha_1 = \alpha_0, provided that one can find a family of vector fields satisfying a certain ODE. More generally, the argument holds for a family \_ and produce an entire isotopy \psi_t such that \psi_t^* \alpha_t = \alpha_0. It was originally given by Jürgen Moser in 1965 to check when two volume forms are equivalent, but its main applications are in symplectic geometry. It is the standard argument for the modern proof of Darboux's theorem, as well as for the proof of Darboux-Weinstein theorem and other normal form results. General statement Let \_ \subset \Omega^k (M) be a family of differential forms on a compact manifold M. If the ODE \frac \omega_t + \mathcal_ \omega_t = 0 admits a solution \_ \subset \mathfrak(M), then there exists a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pullback (differential Geometry)
Let \phi:M\to N be a smooth map between smooth manifolds M and N. Then there is an associated linear map from the space of 1-forms on N (the linear space of sections of the cotangent bundle) to the space of 1-forms on M. This linear map is known as the pullback (by \phi), and is frequently denoted by \phi^*. More generally, any covariant tensor field – in particular any differential form – on N may be pulled back to M using \phi. When the map \phi is a diffeomorphism, then the pullback, together with the pushforward, can be used to transform any tensor field from N to M or vice versa. In particular, if \phi is a diffeomorphism between open subsets of \R^n and \R^n, viewed as a change of coordinates (perhaps between different charts on a manifold M), then the pullback and pushforward describe the transformation properties of covariant and contravariant tensors used in more traditional (coordinate dependent) approaches to the subject. The idea behind the pullba ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cover (topology)
In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a family of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\subset X (indexed by the set A), then C is a cover of X if \bigcup_U_ = X. Thus the collection \lbrace U_\alpha : \alpha \in A \rbrace is a cover of X if each element of X belongs to at least one of the subsets U_. Definition Covers are commonly used in the context of topology. If the set X is a topological space, then a cover C of X is a collection of subsets \_ of X whose union is the whole space X = \bigcup_U_. In this case C is said to cover X, or that the sets U_\alpha cover X. If Y is a (topological) subspace of X, then a cover of Y is a collection of subsets C = \_ of X whose union contains Y. That is, C is a cover of Y if Y \subseteq \bigcup_U_. Here, Y may be covered with either sets in Y itself or sets in the parent spac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oxford University Press
Oxford University Press (OUP) is the publishing house of the University of Oxford. It is the largest university press in the world. Its first book was printed in Oxford in 1478, with the Press officially granted the legal right to print books by decree in 1586. It is the second-oldest university press after Cambridge University Press, which was founded in 1534. It is a department of the University of Oxford. It is governed by a group of 15 academics, the Delegates of the Press, appointed by the Vice Chancellor, vice-chancellor of the University of Oxford. The Delegates of the Press are led by the Secretary to the Delegates, who serves as OUP's chief executive and as its major representative on other university bodies. Oxford University Press has had a similar governance structure since the 17th century. The press is located on Walton Street, Oxford, Walton Street, Oxford, opposite Somerville College, Oxford, Somerville College, in the inner suburb of Jericho, Oxford, Jericho. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exterior Derivative
On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus. If a differential -form is thought of as measuring the flux through an infinitesimal - parallelotope at each point of the manifold, then its exterior derivative can be thought of as measuring the net flux through the boundary of a -parallelotope at each point. Definition The exterior derivative of a differential form of degree (also differential -form, or just -form for brevity here) is a differential form of degree . If is a smooth function (a -form), then the exterior derivative of is the differential of . That is, is the unique -form such that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |