Crouzeix's Conjecture
   HOME
*





Crouzeix's Conjecture
Crouzeix's conjecture is an unsolved (as of 2018) problem in matrix analysis. It was proposed by Michel Crouzeix in 2004, and it refines Crouzeix's theorem, which states: : \, f(A)\, \le 11.08 \sup_ , f(z), where the set W(A) is the field of values of a ''n''×''n'' (i.e. square) complex matrix A and f is a complex function, that is analytic in the interior of W(A) and continuous up to the boundary of W(A). The constant 11.08 is independent of the matrix dimension, thus transferable to infinite-dimensional settings. The not yet proved conjecture states that the constant is sharpable to 2: : \, f(A)\, \le 2 \sup_ , f(z), Michel Crouzeix and Cesar Palencia proved in 2017 that the result holds for 1+\sqrt, improving the original constant of 11.08. Slightly reformulated, the conjecture can be stated as follows: For all square complex matrices A and all complex polynomials p: : \, p(A)\, \le 2 \sup_ , p(z), holds, where the norm on the left-hand side is the spectral oper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix Analysis
In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and cosines etc. of matrices), and the eigenvalues of matrices (eigendecomposition of a matrix, eigenvalue perturbation theory). Matrix spaces The set of all ''m'' × ''n'' matrices over a field ''F'' denoted in this article ''M''''mn''(''F'') form a vector space. Examples of ''F'' include the set of rational numbers \mathbb, the real numbers \mathbb, and set of complex numbers \mathbb. The spaces ''M''''mn''(''F'') and ''M''''pq''(''F'') are different spaces if ''m'' and ''p'' are unequal, and if ''n'' and ''q'' are unequal; for instance ''M''32(''F'') ≠ ''M''23(''F''). Two ''m''&thins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Of Values
In the mathematical field of linear algebra and convex analysis, the numerical range or field of values of a complex n \times n matrix ''A'' is the set :W(A) = \left\ where \mathbf^* denotes the conjugate transpose of the vector \mathbf. The numerical range includes, in particular, the diagonal entries of the matrix (obtained by choosing ''x'' equal to the unit vectors along the coordinate axes) and the eigenvalues of the matrix (obtained by choosing ''x'' equal to the eigenvectors). In engineering, numerical ranges are used as a rough estimate of eigenvalues of ''A''. Recently, generalizations of the numerical range are used to study quantum computing. A related concept is the numerical radius, which is the largest absolute value of the numbers in the numerical range, i.e. :r(A) = \sup \ = \sup_ , \langle Ax, x \rangle, . Properties # The numerical range is the range of the Rayleigh quotient. # (Hausdorff–Toeplitz theorem) The numerical range is convex and compact. # ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Matrix
In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if R is a square matrix representing a rotation (rotation matrix) and \mathbf is a column vector describing the position of a point in space, the product R\mathbf yields another column vector describing the position of that point after that rotation. If \mathbf is a row vector, the same transformation can be obtained using where R^ is the transpose of Main diagonal The entries a_ (''i'' = 1, …, ''n'') form the main diagonal of a square matrix. They lie on the imaginary line which runs from the top left corner to the bottom right corner of the matrix. For instance, the main diagonal of the 4×4 matrix above contains the elements , , , . The d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dimension (mathematics)
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on itfor example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on itfor example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces. In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that was found necessar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvalue
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by \lambda, is the factor by which the eigenvector is scaled. Geometrically, an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction in which it is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed. Loosely speaking, in a multidimensional vector space, the eigenvector is not rotated. Formal definition If is a linear transformation from a vector space over a field into itself and is a nonzero vector in , then is an eigenvector of if is a scalar multiple of . This can be written as T(\mathbf) = \lambda \mathbf, where is a scalar in , known as the eigenvalue, characteristic value, or characteristic root ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anne Greenbaum
Anne Greenbaum (born 1951) is an American applied mathematician and professor at the University of Washington. She was named a SIAM Fellow in 2015 "for contributions to theoretical and numerical linear algebra". She has written graduate and undergraduate textbooks on numerical methods. Education Greenbaum received her bachelor's degree from the University of Michigan in 1974. She earned her PhD from the University of California, Berkeley in 1981. Employment After receiving her bachelor's degree, Greenbaum worked for the Lawrence Livermore National Laboratory. She joined the Courant Institute of Mathematical Sciences in 1986, and moved to the University of Washington in 1998. Awards and honors Greenbaum received a Best Paper Prize from the SIAM Activity Group on Linear Algebra in 1994, together with Roland Freund, Noel Nachtigal, and Zdenek Strakos. She received the Bernard Bolzano Honorary Medal for Merit in the Mathematical Sciences from the Czech Academy of Sciences in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjectures
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Important examples Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, ''b'', and ''c'' can satisfy the equation ''a^n + b^n = c^n'' for any integer value of ''n'' greater than two. This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of '' Arithmetica'', where he claimed that he had a proof that was too large to fit in the margin. The first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort by mathe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix Theory
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]