Counterexamples In Topology
   HOME
*





Counterexamples In Topology
''Counterexamples in Topology'' (1970, 2nd ed. 1978) is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr. In the process of working on problems like the metrization problem, topologists (including Steen and Seebach) have defined a wide variety of topological properties. It is often useful in the study and understanding of abstracts such as topological spaces to determine that one property does not follow from another. One of the easiest ways of doing this is to find a counterexample which exhibits one property but not the other. In ''Counterexamples in Topology'', Steen and Seebach, together with five students in an undergraduate research project at St. Olaf College, Minnesota in the summer of 1967, canvassed the field of topology for such counterexamples and compiled them in an attempt to simplify the literature. For instance, an example of a first-countable space which is not second-countable is counterexample #3, the discrete topology on an uncoun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lynn Steen
Lynn Arthur Steen (January 1, 1941 – June 21, 2015) was an American mathematician who was a Professor of Mathematics at St. Olaf College, Northfield, Minnesota in the U.S. He wrote numerous books and articles on the teaching of mathematics. He was a past president of the Mathematics Association of America (MAA) and served as chairman of the Conference Board of the Mathematical Sciences. Biography Lynn Steen was born in Chicago, Illinois but was raised in Staten Island, New York. His mother was a singer at the N.Y. City Center Opera and his father conducted the Wagner College Choir. In 1961, Steen graduated from Luther College with a degree in Mathematics and a minor in Physics. In 1965 Steen graduated from MIT with a Ph.D in Mathematics. He then joined the faculty of St. Olaf College. At the beginning of Steen's career he mainly focused on teaching and helping develop research experiences for undergraduates. His teaching led Steen to begin to investigate the links between mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completely Hausdorff Space
In topology, a discipline within mathematics, an Urysohn space, or T2½ space, is a topological space in which any two distinct points can be separated by closed neighborhoods. A completely Hausdorff space, or functionally Hausdorff space, is a topological space in which any two distinct points can be separated by a continuous function. These conditions are separation axioms that are somewhat stronger than the more familiar Hausdorff axiom T2. Definitions Suppose that ''X'' is a topological space. Let ''x'' and ''y'' be points in ''X''. *We say that ''x'' and ''y'' can be '' separated by closed neighborhoods'' if there exists a closed neighborhood ''U'' of ''x'' and a closed neighborhood ''V'' of ''y'' such that ''U'' and ''V'' are disjoint (''U'' ∩ ''V'' = ∅). (Note that a "closed neighborhood of ''x''" is a closed set that contains an open set containing ''x''.) *We say that ''x'' and ''y'' can be ''separated by a function'' if there exists a continuous function ''f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Completely Normal Space
In topology and related branches of mathematics, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint closed sets of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces. Definitions A topological space ''X'' is a normal space if, given any disjoint closed sets ''E'' and ''F'', there are neighbourhoods ''U'' of ''E'' and ''V'' of ''F'' that are also disjoint. More intuitively, this condition says that ''E'' and ''F'' can be separated by neighbourhoods. A T4 space is a T1 space ''X'' that is normal; this is equivalent to ''X'' being normal and Hausdorff. A completely normal space, or , is a topological space ''X'' such that every subspace of ''X'' with subspace topology is a normal space. It turns out ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Space
In topology and related branches of mathematics, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint closed sets of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces. Definitions A topological space ''X'' is a normal space if, given any disjoint closed sets ''E'' and ''F'', there are neighbourhoods ''U'' of ''E'' and ''V'' of ''F'' that are also disjoint. More intuitively, this condition says that ''E'' and ''F'' can be separated by neighbourhoods. A T4 space is a T1 space ''X'' that is normal; this is equivalent to ''X'' being normal and Hausdorff. A completely normal space, or , is a topological space ''X'' such that every subspace of ''X'' with subspace topology is a normal space. It turns out that ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Space
In topology and related fields of mathematics, a topological space ''X'' is called a regular space if every closed subset ''C'' of ''X'' and a point ''p'' not contained in ''C'' admit non-overlapping open neighborhoods. Thus ''p'' and ''C'' can be separated by neighborhoods. This condition is known as Axiom T3. The term "T3 space" usually means "a regular Hausdorff space". These conditions are examples of separation axioms. Definitions A topological space ''X'' is a regular space if, given any closed set ''F'' and any point ''x'' that does not belong to ''F'', there exists a neighbourhood ''U'' of ''x'' and a neighbourhood ''V'' of ''F'' that are disjoint. Concisely put, it must be possible to separate ''x'' and ''F'' with disjoint neighborhoods. A or is a topological space that is both regular and a Hausdorff space. (A Hausdorff space or T2 space is a topological space in which any two distinct points are separated by neighbourhoods.) It turns out that a space is T3 if a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Separation Axiom
In topology and related fields of mathematics, there are several restrictions that one often makes on the kinds of topological spaces that one wishes to consider. Some of these restrictions are given by the separation axioms. These are sometimes called ''Tychonoff separation axioms'', after Andrey Tychonoff. The separation axioms are not fundamental axioms like those of set theory, but rather defining properties which may be specified to distinguish certain types of topological spaces. The separation axioms are denoted with the letter "T" after the German ''Trennungsaxiom ("''separation axiom"), and increasing numerical subscripts denote stronger and stronger properties. The precise definitions of the separation axioms has varied over time. Especially in older literature, different authors might have different definitions of each condition. Preliminary definitions Before we define the separation axioms themselves, we give concrete meaning to the concept of separated sets (a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Naming Convention
A naming convention is a convention (generally agreed scheme) for naming things. Conventions differ in their intents, which may include to: * Allow useful information to be deduced from the names based on regularities. For instance, in Manhattan, streets are consecutively numbered; with east–west streets called "Streets" and north–south streets called "Avenues". * Show relationships, and in most personal naming conventions * Ensure that each name is unique for same scope Use cases Well-chosen naming conventions aid the casual user in navigating and searching larger structures. Several areas where naming conventions are commonly used include: * In astronomy, planetary nomenclature * In classics, Roman naming conventions * In computer programming, identifier naming conventions * In computer networking, naming scheme * In humans, naming offspring * In industry, product naming conventions * In the sciences, systematic names for a variety of things Examples Examples of naming c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Naturalism (philosophy)
In philosophy, naturalism is the idea or belief that only Physical law, natural laws and forces (as opposed to supernatural ones) operate in the universe. According to philosopher Steven Lockwood, naturalism can be separated into an ontological sense and a methodological sense. "Ontological" refers to ontology, the philosophical study of what exists. On an ontological level, philosophers often treat naturalism as equivalent to materialism. For example, philosopher Paul Kurtz argues that nature is best accounted for by reference to Matter, material principles. These principles include mass, energy, and other Physical property, physical and Chemical property, chemical properties accepted by the scientific community. Further, this sense of naturalism holds that spirits, Deity, deities, and ghosts are not real and that there is no "Teleology, purpose" in nature. This stronger formulation of naturalism is commonly referred to as ''metaphysical naturalism''. On the other hand, the more ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Henri Lebesgue
Henri Léon Lebesgue (; June 28, 1875 – July 26, 1941) was a French mathematician known for his theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an axis and the curve of a function defined for that axis. His theory was published originally in his dissertation ''Intégrale, longueur, aire'' ("Integral, length, area") at the University of Nancy during 1902. Personal life Henri Lebesgue was born on 28 June 1875 in Beauvais, Oise. Lebesgue's father was a typesetter and his mother was a school teacher. His parents assembled at home a library that the young Henri was able to use. His father died of tuberculosis when Lebesgue was still very young and his mother had to support him by herself. As he showed a remarkable talent for mathematics in primary school, one of his instructors arranged for community support to continue his education at the Collège de Beauvais and then at Lycée Saint-Louis and Lycée Louis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in:Abstracting and Indexing
*

Mathematical Reviews
''Mathematical Reviews'' is a journal published by the American Mathematical Society (AMS) that contains brief synopses, and in some cases evaluations, of many articles in mathematics, statistics, and theoretical computer science. The AMS also publishes an associated online bibliographic database called MathSciNet which contains an electronic version of ''Mathematical Reviews'' and additionally contains citation information for over 3.5 million items as of 2018. Reviews Mathematical Reviews was founded by Otto E. Neugebauer in 1940 as an alternative to the German journal ''Zentralblatt für Mathematik'', which Neugebauer had also founded a decade earlier, but which under the Nazis had begun censoring reviews by and of Jewish mathematicians. The goal of the new journal was to give reviews of every mathematical research publication. As of November 2007, the ''Mathematical Reviews'' database contained information on over 2.2 million articles. The authors of reviews are volunteers, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]