HOME
*





Corticocortical Coherence
Corticocortical coherence is referred to the synchrony in the neural activity of different cortical brain areas. The neural activities are picked up by electrophysiological recordings from the brain (e.g. EEG, MEG, ECoG, etc.). It is a method to study the brain's neural communication and function at rest or during functional tasks. History and basics Initial applications of spectral analysis for finding the relationship between the EEG recordings from different regions of scalp dates back to 1960's. Corticocortical coherence has since been extensively studied using EEG and MEG recording for potential diagnostic applications and beyond. The exact origins of corticocortical coherence are under active investigation. While the consensus suggests that the functional neural communication between distinct brain sources leads to synchronous activity in those regions (possibly connected by neural tracts, in either direct or indirect way), an alternative explanation emphasises on single ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electroencephalography
Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex and allocortex. It is typically non-invasive, with the EEG electrodes placed along the scalp (commonly called "scalp EEG") using the International 10-20 system, or variations of it. Electrocorticography, involving surgical placement of electrodes, is sometimes called "intracranial EEG". Clinical interpretation of EEG recordings is most often performed by visual inspection of the tracing or quantitative EEG analysis. Voltage fluctuations measured by the EEG bioamplifier and electrodes allow the evaluation of normal brain activity. As the electrical activity monitored by EEG originates in neurons in the underlying brain tissue, the recordings made by the electrodes on the surface of the scalp vary in accordance with their orientation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Magnetoencephalography
Magnetoencephalography (MEG) is a functional neuroimaging technique for mapping brain activity by recording magnetic fields produced by electrical currents occurring naturally in the brain, using very sensitive magnetometers. Arrays of SQUIDs (superconducting quantum interference devices) are currently the most common magnetometer, while the SERF (spin exchange relaxation-free) magnetometer is being investigated for future machines. Applications of MEG include basic research into perceptual and cognitive brain processes, localizing regions affected by pathology before surgical removal, determining the function of various parts of the brain, and neurofeedback. This can be applied in a clinical setting to find locations of abnormalities as well as in an experimental setting to simply measure brain activity. History MEG signals were first measured by University of Illinois physicist David Cohen in 1968, before the availability of the SQUID, using a copper induction coil as the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electrocorticography
Electrocorticography (ECoG), or intracranial electroencephalography (iEEG), is a type of electrophysiological monitoring that uses electrodes placed directly on the exposed surface of the brain to record electrical activity from the cerebral cortex. In contrast, conventional electroencephalography (EEG) electrodes monitor this activity from outside the skull. ECoG may be performed either in the operating room during surgery (intraoperative ECoG) or outside of surgery (extraoperative ECoG). Because a craniotomy (a surgical incision into the skull) is required to implant the electrode grid, ECoG is an invasive procedure. History ECoG was pioneered in the early 1950s by Wilder Penfield and Herbert Jasper, neurosurgeons at the Montreal Neurological Institute. The two developed ECoG as part of their groundbreakinMontreal procedure a surgical protocol used to treat patients with severe epilepsy. The cortical potentials recorded by ECoG were used to identify epileptogenic zon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coherence (signal Processing)
In signal processing, the coherence is a statistic that can be used to examine the relation between two signals or data sets. It is commonly used to estimate the power transfer between input and output of a linear system. If the signals are ergodic, and the system function is linear, it can be used to estimate the causality between the input and output. Definition and formulation The coherence (sometimes called magnitude-squared coherence) between two signals x(t) and y(t) is a real-valued function that is defined as: ::C_(f) = \frac where Gxy(f) is the Cross-spectral density between x and y, and Gxx(f) and Gyy(f) the auto spectral density of x and y respectively. The magnitude of the spectral density is denoted as , G, . Given the restrictions noted above (ergodicity, linearity) the coherence function estimates the extent to which y(t) may be predicted from x(t) by an optimum linear least squares function. Values of coherence will always satisfy 0\le C_(f)\le 1. For an ''idea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Intermuscular Coherence
Intermuscular Coherence is a measure to quantify correlations between the activity of two muscles, which is often assessed using electromyography. The correlations in muscle activity are quantified in frequency domain, and therefore referred to as intermuscular coherence.Farmer, S. F., Bremner, F. D., Halliday, D. M., Rosenberg, J. R., & Stephens, J. A. (1993). The frequency content of common synaptic inputs to motoneurones studied during voluntary isometric contraction in man. The Journal of Physiology, 470(1), 127–155 History The synchronisation of motor units of a single muscle in animals and humans are known for decades. The early studies that investigated the relationship of EMG activity used time-domain cross-correlation to quantify common input. The explicit notion of presence of synchrony between motor units of two different muscles was reported at a later time. In the 1990s, coherence analysis was introduced to examine in frequency content of common input. Physiolog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Corticomuscular Coherence
Corticomuscular Coherence relates to the synchrony in the neural activity of brain's cortical areas and muscle. The neural activities are picked up by electrophysiological recordings from the brain (e.g. EEG, MEG, ECoG, etc.) and muscle ( EMG). It is a method to study the neural control of movement. Physiology Corticomuscular Coherence was initially reported between MEG and EMG and is widely studied between EMG and EEG, MEG, etc. The origins of corticomuscular coherence seem to be communication in corticospinal pathways between primary motor cortex and muscles. While the role of descending corticomuscular pathways in generation of coherence are more clear, the role of ascending sensory spinocortical pathways are less certain. Corticomuscular coherence has been of special interest in alpha band (about 10 Hz), in Beta band (15–30 Hz), and in Gamma band (35–60 Hz). Mathematics and Statistics A classic and commonly used approach to assess the synchrony bet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]