Cooper-pair Box
   HOME
*





Cooper-pair Box
In quantum computing, a charge qubit (also known as Cooper-pair box) is a qubit whose basis states are charge states (i.e. states which represent the presence or absence of excess Cooper pairs in the island). In superconducting quantum computing, a charge qubit is formed by a tiny superconducting island coupled by a Josephson junction (or practically, superconducting tunnel junction) to a superconducting reservoir (see figure). The state of the qubit is determined by the number of Cooper pairs which have tunneled across the junction. In contrast with the charge state of an atomic or molecular ion, the charge states of such an "island" involve a macroscopic number of conduction electrons of the island. The quantum superposition of charge states can be achieved by tuning the gate voltage ''U'' that controls the chemical potential of the island. The charge qubit is typically read-out by electrostatically coupling the island to an extremely sensitive electrometer such as the radio-f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cooper Pair Box Circuit
Cooper, Cooper's, Coopers and similar may refer to: * Cooper (profession), a maker of wooden casks and other staved vessels Arts and entertainment * Cooper (producers), alias of Dutch producers Klubbheads * Cooper (video game character), in ''Dino Crisis'' * "Cooper", a song by Roxette from the 1999 album ''Have a Nice Day'' * The Cooper Brothers, Canadian southern rock band Businesses and organisations * Cooper (company), an American user experience design and business strategy consulting firm * Cooper Canada, defunct sporting goods manufacturer * Cooper Car Company, British car company **Mini Cooper, the name of several cars * Cooper Chemical Company, an American chemical manufacturer * The Cooper Companies, an American medical device company * Cooper Enterprises, Canadian boat builder ** Cooper 353, Canadian sailboat ** Cooper 416, Canadian sailboat * Cooper Firearms of Montana, an American firearms manufacturer * Cooper Foundation, an American charitable and educati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phase Qubit
In quantum computing, and more specifically in superconducting quantum computing, the phase qubit is a superconducting device based on the superconductor–insulator–superconductor (SIS) Josephson junction, designed to operate as a quantum bit, or qubit. The phase qubit is closely related, yet distinct from, the flux qubit and the charge qubit, which are also quantum bits implemented by superconducting devices. The major distinction among the three is the ratio of Josephson energy vs charging energy (the necessary energy for one Cooper pair to ''charge'' the total capacitance in the circuit): * For phase qubit, this ratio is on the order of 106, which allows for macroscopic bias current through the junction; * For flux qubit it's on the order of 10, which allows for mesoscopic supercurrents (typically ~300 nAUniversity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michel Devoret
Michel Devoret is a French physicist and F. W. Beinecke Professor of Applied Physics at Yale University. He also holds a position as the Director of the Applied Physics Nanofabrication Lab at Yale. He is known for his pioneering work on macroscopic quantum tunneling, and the single-electron pump as well as in groundbreaking contributions to initiating the fields of circuit quantum electrodynamics and quantronics. Biography Devoret was born in France. He graduated from Ecole Nationale Superieure des Telecommunications in Paris (1975) and went on to earn his PhD in physics from the University of Orsay ( University of Paris-Sud) in 1982, while working in the molecular quantum physics group at Paris. After his doctoral work, he proceeded to post-doctoral training for two years, working on macroscopic quantum tunneling in John Clarke's laboratory at the University of California Berkeley. Devoret's research has been focused on experimental solid state physics and condensed matte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Robert J
The name Robert is an ancient Germanic given name, from Proto-Germanic "fame" and "bright" (''Hrōþiberhtaz''). Compare Old Dutch ''Robrecht'' and Old High German ''Hrodebert'' (a compound of '' Hruod'' ( non, Hróðr) "fame, glory, honour, praise, renown" and ''berht'' "bright, light, shining"). It is the second most frequently used given name of ancient Germanic origin. It is also in use as a surname. Another commonly used form of the name is Rupert. After becoming widely used in Continental Europe it entered England in its Old French form ''Robert'', where an Old English cognate form (''Hrēodbēorht'', ''Hrodberht'', ''Hrēodbēorð'', ''Hrœdbœrð'', ''Hrœdberð'', ''Hrōðberχtŕ'') had existed before the Norman Conquest. The feminine version is Roberta. The Italian, Portuguese, and Spanish form is Roberto. Robert is also a common name in many Germanic languages, including English, German, Dutch, Norwegian, Swedish, Scots, Danish, and Icelandic. It can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transmon
In quantum computing, and more specifically in superconducting quantum computing, a transmon is a type of superconducting charge qubit that was designed to have reduced sensitivity to charge noise. The transmon was developed by Robert J. Schoelkopf, Michel Devoret, Steven M. Girvin, and their colleagues at Yale University in 2007. Its name is an abbreviation of the term ''transmission line shunted plasma oscillation qubit''; one which consists of a Cooper-pair box "where the two superconductors are also capacitatively shunted in order to decrease the sensitivity to charge noise, while maintaining a sufficient anharmonicity for selective qubit control". The transmon achieves its reduced sensitivity to charge noise by significantly increasing the ratio of the Josephson energy to the charging energy. This is accomplished through the use of a large shunting capacitor. The result is energy level spacings that are approximately independent of offset charge. Planar on-chip transmon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vincent Bouchiat
Vincent Bouchiat (born 1970) is a French condensed matter physicist. Education Vincent Bouchiat followed his studies in Paris partially at the Lycée Henri-IV. In 1993, he received an engineer degree from the School of Industrial Physics and Chemistry of Paris ESPCI in 1993 and a master's degree in solid state physics from the University of Paris, Pierre & Marie Curie. After completing his Ph.D. at Quantronics group in CEA-Saclay in 1997 under the supervision of Michel Devoret and Daniel Estève, he received a CNRS position the same year at University of Marseilles. Research Bouchiat'PhD dissertationis recognized as a pioneering study in the field of quantum computing hardware, showing the quantum superposition of charge states in a single Cooper pair box. This experiment paved the way for the realisation of a charge qubit. Dr Bouchiat's research interests cover a wide range of solid state physics and multidisciplinary investigations which include quantum information ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Decoherence
Quantum decoherence is the loss of quantum coherence. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave function is used to explain various quantum effects. As long as there exists a definite phase relation between different states, the system is said to be coherent. A definite phase relationship is necessary to perform quantum computing on quantum information encoded in quantum states. Coherence is preserved under the laws of quantum physics. If a quantum system were perfectly isolated, it would maintain coherence indefinitely, but it would be impossible to manipulate or investigate it. If it is not perfectly isolated, for example during a measurement, coherence is shared with the environment and appears to be lost with time; a process called quantum decoherence. As a result of this process, quantum behavior is apparently lost, just as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solid-state Physics
Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale properties. Thus, solid-state physics forms a theoretical basis of materials science. It also has direct applications, for example in the technology of transistors and semiconductors. Background Solid materials are formed from densely packed atoms, which interact intensely. These interactions produce the mechanical (e.g. hardness and elasticity), thermal, electrical, magnetic and optical properties of solids. Depending on the material involved and the conditions in which it was formed, the atoms may be arranged in a regular, geometric pattern ( crystalline solids, which include metals and ordinary water ice) or irregularly (an amorphous solid such as common ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Computing
Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though current quantum computers may be too small to outperform usual (classical) computers for practical applications, larger realizations are believed to be capable of solving certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science. There are several models of quantum computation with the most widely used being quantum circuits. Other models include the quantum Turing machine, quantum annealing, and adiabatic quantum computation. Most models are based on the quantum bit, or "qubit", which is somewhat analogous to the bit in classical computation. A qubit can be in a 1 or 0 quantu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shor's Algorithm
Shor's algorithm is a quantum computer algorithm for finding the prime factors of an integer. It was developed in 1994 by the American mathematician Peter Shor. On a quantum computer, to factor an integer N , Shor's algorithm runs in polynomial time, meaning the time taken is polynomial in \log N , the size of the integer given as input. Specifically, it takes quantum gates of order O \! \left((\log N)^ (\log \log N) (\log \log \log N) \right) using fast multiplication, or even O \! \left((\log N)^ (\log \log N) \right) utilizing the asymptotically fastest multiplication algorithm currently known due to Harvey and Van Der Hoven, thus demonstrating that the problem can be efficiently solved on a quantum computer and is consequently in the

picture info

Nuclear Magnetic Resonance
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20  tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. Nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ion Trap
An ion trap is a combination of electric and/or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment. Atomic and molecular ion traps have a number of applications in physics and chemistry such as precision mass spectrometry, improved atomic frequency standards, and quantum computing. In comparison to neutral atom traps, ion traps have deeper trapping potentials (up to several electronvolts) that do not depend on the internal electronic structure of a trapped ion. This makes ion traps more suitable for the study of light interactions with single atomic systems. The two most popular types of ion traps are the Penning trap, which forms a potential via a combination of static electric and magnetic fields, and the Paul trap which forms a potential via a combination of static and oscillating electric fields. Penning traps can be used for precise magnetic measurements in spectroscopy. Studies of quantum state ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]