Convergent Matrix
   HOME
*





Convergent Matrix
In linear algebra, a convergent matrix is a matrix that converges to the zero matrix under Matrix multiplication#Powers of a matrix, matrix exponentiation. Background When successive powers of a matrix (mathematics), matrix T become small (that is, when all of the entries of T approach zero, upon raising T to successive powers), the matrix T converges to the zero matrix. A matrix splitting, regular splitting of a invertible matrix, non-singular matrix A results in a convergent matrix T. A semi-convergent splitting of a matrix A results in a semi-convergent matrix T. A general iterative method converges for every initial vector if T is convergent, and under certain conditions if T is semi-convergent. Definition We call an ''n'' × ''n'' matrix T a convergent matrix if for each ''i'' = 1, 2, ..., ''n'' and ''j'' = 1, 2, ..., ''n''. Example Let :\begin & \mathbf = \begin \frac & \frac \\[4pt] 0 & \frac \end. \end Computing successive powers of T, we obtain :\begin & \mathb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Matrices
This article lists some important classes of matrices used in mathematics, science and engineering. A matrix (plural matrices, or less commonly matrixes) is a rectangular array of numbers called ''entries''. Matrices have a long history of both study and application, leading to diverse ways of classifying matrices. A first group is matrices satisfying concrete conditions of the entries, including constant matrices. Important examples include the identity matrix given by : I_n = \begin 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end. and the zero matrix of dimension m \times n. For example: : O_ = \begin 0 & 0 & 0 \\ 0 & 0 & 0 \end. Further ways of classifying matrices are according to their eigenvalues, or by imposing conditions on the product of the matrix with other matrices. Finally, many domains, both in mathematics and other sciences including physics and chemistry, have particular matrices that are applied chiefly in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrices
Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchise) * Matrix (mathematics), a rectangular array of numbers, symbols or expressions Matrix (or its plural form matrices) may also refer to: Science and mathematics * Matrix (mathematics), algebraic structure, extension of vector into 2 dimensions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the material in between a eukaryotic organism's cells * Matrix (chemical analysis), the non-analyte components of a sample * Matrix (geology), the fine-grained material in which larger objects are embedded * Matrix (composite), the constituent of a composite material * Hair matrix, produces hair * Nail matrix, part of the nail in anatomy Arts and entertainment Fictional entities * Matrix (comics), two comic book ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Limits (mathematics)
Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 song by Paenda; see Austria in the Eurovision Song Contest 2019 * ''Limits'' (collection), a collection of short stories and essays by Larry Niven * The Limit, a Dutch band *The Limit, an episode from ''The Amazing World of Gumball'' Mathematics * Limit (mathematics), the value that a function or sequence "approaches" as the input or index approaches some value ** Limit of a function ***(ε,_δ)-definition of limit, formal definition of the mathematical notion of limit ** Limit of a sequence ** One-sided limit, either of the two limits of a function as a specified point is approached from below or from above * Limit of a net * Limit point, in topological spaces * Limit (category theory) ** Direct limit ** Inverse limit Other uses * Limi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prentice–Hall
Prentice Hall was an American major educational publisher owned by Savvas Learning Company. Prentice Hall publishes print and digital content for the 6–12 and higher-education market, and distributes its technical titles through the Safari Books Online e-reference service. History On October 13, 1913, law professor Charles Gerstenberg and his student Richard Ettinger founded Prentice Hall. Gerstenberg and Ettinger took their mothers' maiden names, Prentice and Hall, to name their new company. Prentice Hall became known as a publisher of trade books by authors such as Norman Vincent Peale; elementary, secondary, and college textbooks; loose-leaf information services; and professional books. Prentice Hall acquired the training provider Deltak in 1979. Prentice Hall was acquired by Gulf+Western in 1984, and became part of that company's publishing division Simon & Schuster. S&S sold several Prentice Hall subsidiaries: Deltak and Resource Systems were sold to National Education ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


University Of Wisconsin Press
The University of Wisconsin Press (sometimes abbreviated as UW Press) is a non-profit university press publishing peer-reviewed books and journals. It publishes work by scholars from the global academic community; works of fiction, memoir and poetry under its imprint, Terrace Books; and serves the citizens of Wisconsin by publishing important books about Wisconsin, the Upper Midwest, and the Great Lakes region. UW Press annually awards the Brittingham Prize in Poetry, the Felix Pollak Prize in Poetry, and The Four Lakes Prize in Poetry. The press was founded in 1936 in Madison and is one of more than 120 member presses in the Association of American University Presses. The Journals Division was established in 1965. The press employs approximately 25 full and part-time staff, produces 40 to 60 new books a year, and publishes 11 journals. It also distributes books and some annual journals for selected smaller publishers. The press is a unit of the Graduate School of the University ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SIAM Journal On Numerical Analysis
The ''SIAM Journal on Numerical Analysis'' (SINUM; until 1965: ''Journal of the Society for Industrial & Applied Mathematics, Series B: Numerical Analysis'') is a peer-reviewed mathematical journal published by the Society for Industrial and Applied Mathematics that covers research on the analysis of numerical methods. The journal was established in 1964 and appears bimonthly. The editor-in-chief is Angela Kunoth. References External links * {{Society for Industrial and Applied Mathematics Numerical Analysis Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods ... Mathematics journals Bimonthly journals Publications established in 1964 English-language journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dover Publications
Dover Publications, also known as Dover Books, is an American book publisher founded in 1941 by Hayward and Blanche Cirker. It primarily reissues books that are out of print from their original publishers. These are often, but not always, books in the public domain. The original published editions may be scarce or historically significant. Dover republishes these books, making them available at a significantly reduced cost. Classic reprints Dover reprints classic works of literature, classical sheet music, and public-domain images from the 18th and 19th centuries. Dover also publishes an extensive collection of mathematical, scientific, and engineering texts. It often targets its reprints at a niche market, such as woodworking. Starting in 2015, the company branched out into graphic novel reprints, overseen by Dover acquisitions editor and former comics writer and editor Drew Ford. Most Dover reprints are photo facsimiles of the originals, retaining the original pagination and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Successive Over-relaxation
In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process. It was devised simultaneously by David M. Young Jr. and by Stanley P. Frankel in 1950 for the purpose of automatically solving linear systems on digital computers. Over-relaxation methods had been used before the work of Young and Frankel. An example is the method of Lewis Fry Richardson, and the methods developed by R. V. Southwell. However, these methods were designed for computation by human calculators, requiring some expertise to ensure convergence to the solution which made them inapplicable for programming on digital computers. These aspects are discussed in the thesis of David M. Young Jr. Formulation Given a square system of ''n'' linear equations with unknown x: :A\mathbf x = \mathbf b where: :A=\begin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nilpotent Matrix
In linear algebra, a nilpotent matrix is a square matrix ''N'' such that :N^k = 0\, for some positive integer k. The smallest such k is called the index of N, sometimes the degree of N. More generally, a nilpotent transformation is a linear transformation L of a vector space such that L^k = 0 for some positive integer k (and thus, L^j = 0 for all j \geq k). Both of these concepts are special cases of a more general concept of nilpotence that applies to elements of rings. Examples Example 1 The matrix : A = \begin 0 & 1 \\ 0 & 0 \end is nilpotent with index 2, since A^2 = 0. Example 2 More generally, any n-dimensional triangular matrix with zeros along the main diagonal is nilpotent, with index \le n . For example, the matrix : B=\begin 0 & 2 & 1 & 6\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0 \end is nilpotent, with : B^2=\begin 0 & 0 & 2 & 7\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end ;\ B^3=\begin 0 & 0 & 0 & 6\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobi Method
In numerical linear algebra, the Jacobi method is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi. Description Let :A\mathbf x = \mathbf b be a square system of ''n'' linear equations, where: A = \begin a_ & a_ & \cdots & a_ \\ a_ & a_ & \cdots & a_ \\ \vdots & \vdots & \ddots & \vdots \\a_ & a_ & \cdots & a_ \end, \qquad \mathbf = \begin x_ \\ x_2 \\ \vdots \\ x_n \end , \qquad \mathbf = \begin b_ \\ b_2 \\ \vdots \\ b_n \end. Then ''A'' can be decomposed into a diagonal component ''D'', a lower triangular part ''L'' and an upper triangular part ''U'': :A=D+L+U \qquad \text \qquad D = \begin a_ & 0 & \cdots & 0 \\ 0 & a_ & \cdot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]