HOME
*





Continuous Linear Functional
In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces. An operator between two normed spaces is a bounded linear operator if and only if it is a continuous linear operator. Continuous linear operators Characterizations of continuity Suppose that F : X \to Y is a linear operator between two topological vector spaces (TVSs). The following are equivalent: F is continuous. F is continuous at some point x \in X. F is continuous at the origin in X. if Y is locally convex then this list may be extended to include: for every continuous seminorm q on Y, there exists a continuous seminorm p on X such that q \circ F \leq p. if X and Y are both Hausdorff locally convex spaces then this list may be extended to include: F is weakly continuous and its transpose ^t F : Y^ \to X^ maps equicontinuous subsets of Y^ to equicontinuous subsets of X^. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations. The usage of the word '' functional'' as a noun goes back to the calculus of variations, implying a function whose argument is a function. The term was first used in Hadamard's 1910 book on that subject. However, the general concept of a functional had previously been introduced in 1887 by the I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sequential Continuity At A Point
In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces (especially metric spaces) are sequential. In any topological space (X, \tau), if a convergent sequence is contained in a closed set C, then the limit of that sequence must be contained in C as well. This property is known as sequential closure. Sequential spaces are precisely those topological spaces for which sequentially closed sets are in fact closed. (These definitions can also be rephrased in terms of sequentially open sets; see below.) Said differently, any topology can be described in terms of nets (also known as Moore–Smith sequences), but those sequences may be "too long" (indexed by too large an ordinal) to compress into a sequence. Sequential spaces are those topological spaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neighborhood (mathematics)
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from that point without leaving the set. Definitions Neighbourhood of a point If X is a topological space and p is a point in X, then a of p is a subset V of X that includes an open set U containing p, p \in U \subseteq V \subseteq X. This is also equivalent to the point p \in X belonging to the topological interior of V in X. The neighbourhood V need be an open subset X, but when V is open in X then it is called an . Some authors have been known to require neighbourhoods to be open, so it is important to note conventions. A set that is a neighbourhood of each of its points is open since it can be expressed as the union of open sets ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sequentially Continuous
In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces (especially metric spaces) are sequential. In any topological space (X, \tau), if a convergent sequence is contained in a closed set C, then the limit of that sequence must be contained in C as well. This property is known as sequential closure. Sequential spaces are precisely those topological spaces for which sequentially closed sets are in fact closed. (These definitions can also be rephrased in terms of sequentially open sets; see below.) Said differently, any topology can be described in terms of nets (also known as Moore–Smith sequences), but those sequences may be "too long" (indexed by too large an ordinal) to compress into a sequence. Sequential spaces are those topological spaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Operator Norm
In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its . Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces. Introduction and definition Given two normed vector spaces V and W (over the same base field, either the real numbers \R or the complex numbers \Complex), a linear map A : V \to W is continuous if and only if there exists a real number c such that \, Av\, \leq c \, v\, \quad \mbox v\in V. The norm on the left is the one in W and the norm on the right is the one in V. Intuitively, the continuous operator A never increases the length of any vector by more than a factor of c. Thus the image of a bounded set under a continuous operator is also bounded. Because of this property, the continuous linear operators are also known as bounded operators. In order to "measure the size" of A, one can take the infimum of the numbers c such that the above ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bounded Linear Operator
In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vector spaces (a special type of TVS), then L is bounded if and only if there exists some M > 0 such that for all x \in X, \, Lx\, _Y \leq M \, x\, _X. The smallest such M is called the operator norm of L and denoted by \, L\, . A bounded operator between normed spaces is continuous and vice versa. The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces. Outside of functional analysis, when a function f : X \to Y is called " bounded" then this usually means that its image f(X) is a bounded subset of its codomain. A linear map has this property if and only if it is identically 0. Consequently, in functional analysis, when a linear operator is called "bounded" then it is never meant in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Vector Space
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations (vector addition and scalar multiplication) are also continuous functions. Such a topology is called a and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space (although this article does not). One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs. Many topological vector spaces are spaces of functions, or linear operators acting o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Norm (mathematics)
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance of a vector from the origin is a norm, called the Euclidean norm, or 2-norm, which may also be defined as the square root of the inner product of a vector with itself. A seminorm satisfies the first two properties of a norm, but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a ''seminormed vector space''. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". A pseudonorm may satisfy the same axioms as a norm, with the equality replaced by an inequality "\,\leq\," in the homogeneity axiom. It can als ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absolute Value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), and For example, the absolute value of 3 and the absolute value of −3 is The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces. The absolute value is closely related to the notions of magnitude, distance, and norm in various mathematical and physical contexts. Terminology and notation In 1806, Jean-Robert Argand introduced the term ''module'', meaning ''unit of measure'' in French, specifically for the ''complex'' absolute value,Oxford English Dictionary, Draft Revision, June 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bounded Set (topological Vector Space)
In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be ''inflated'' to include the set. A set that is not bounded is called unbounded. Bounded sets are a natural way to define locally convex polar topologies on the vector spaces in a dual pair, as the polar set of a bounded set is an absolutely convex and absorbing set. The concept was first introduced by John von Neumann and Andrey Kolmogorov in 1935. Definition Suppose X is a topological vector space (TVS) over a field \mathbb. A subset B of X is called or just in X if any of the following equivalent conditions are satisfied: : For every neighborhood V of the origin there exists a real r > 0 such that B \subseteq s VFor any set A and scalar s, the notation s A is denotes the set s A := \. for all scalars s satisfying , s, \geq r. * This was the definition introduced by John von Neumann ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a (linear) ''endomorphism''. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''linear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Seminormed Space
In mathematics, particularly in functional analysis, a seminorm is a vector space norm that need not be positive definite. Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some absorbing disk and, conversely, the Minkowski functional of any such set is a seminorm. A topological vector space is locally convex if and only if its topology is induced by a family of seminorms. Definition Let X be a vector space over either the real numbers \R or the complex numbers \Complex. A real-valued function p : X \to \R is called a if it satisfies the following two conditions: # Subadditivity/ Triangle inequality: p(x + y) \leq p(x) + p(y) for all x, y \in X. # Absolute homogeneity: p(s x) =, s, p(x) for all x \in X and all scalars s. These two conditions imply that p(0) = 0If z \in X denotes the zero vector in X while 0 denote the zero scalar, then absolute homogeneity implies that p(z) = p(0 z) = , 0, p(z) = 0 p(z) = 0. \blacksquare ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]