Constrained Least Squares
   HOME





Constrained Least Squares
In constrained least squares one solves a linear least squares problem with an additional constraint on the solution. This means, the unconstrained equation \mathbf \boldsymbol = \mathbf must be fit as closely as possible (in the least squares sense) while ensuring that some other property of \boldsymbol is maintained. There are often special-purpose algorithms for solving such problems efficiently. Some examples of constraints are given below: * Equality constrained least squares: the elements of \boldsymbol must exactly satisfy \mathbf \boldsymbol = \mathbf (see Ordinary least squares). * Stochastic (linearly) constrained least squares: the elements of \boldsymbol must satisfy \mathbf \boldsymbol = \mathbf + \mathbf , where \mathbf is a vector of random variables such that \operatorname(\mathbf ) = \mathbf and \operatorname(\mathbf \mathbf ^) = \tau^\mathbf. This effectively imposes a prior distribution for \boldsymbol and is therefore equivalent to Bayesian li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Linear Least Squares (mathematics)
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. Basic formulation Consider the linear equation where A \in \mathbb^ and b \in \mathbb^m are given and x \in \mathbb^n is variable to be computed. When m > n, it is generally the case that () has no solution. For example, there is no value of x that satisfies \begin 1 & 0 \\ 0 & 1 \\ 1 & 1 \end x = \begin 1 \\ 1 \\ 0 \end, because the first two rows require that x = (1, 1), but then the third row is not satisfied. Thus, for m > n, the goal of solving () exactly is typically replaced by finding the value of x that minimizes some error. There are many ways t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Constraint (mathematics)
In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. Example The following is a simple optimization problem: :\min f(\mathbf x) = x_1^2+x_2^4 subject to :x_1 \ge 1 and :x_2 = 1, where \mathbf x denotes the vector (''x''1, ''x''2). In this example, the first line defines the function to be minimized (called the objective function, loss function, or cost function). The second and third lines define two constraints, the first of which is an inequality constraint and the second of which is an equality constraint. These two constraints are hard constraints, meaning that it is required that they be satisfied; they define the feasible set of candidate solutions. Without the constraints, the solution would be (0,0), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Constrained Generalized Inverse
In linear algebra, a constrained generalized inverse is obtained by solving a system of linear equations with an additional constraint that the solution is in a given subspace. One also says that the problem is described by a system of constrained linear equations. In many practical problems, the solution x of a linear system of equations : Ax=b\qquad (\textA\in\R^\text b\in\R^m) is acceptable only when it is in a certain linear subspace L of \R^n. In the following, the orthogonal projection In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if it we ... on L will be denoted by P_L. Constrained system of linear equations :Ax=b\qquad x\in L has a solution if and only if the unconstrained system of equations :(A P_L) x = b\qquad x\in\R^n is solvable. If the subspace L is a proper subspace of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Ordinary Least Squares
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression In statistics, linear regression is a statistical model, model that estimates the relationship between a Scalar (mathematics), scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A mode ... model (with fixed level-one effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values of the variable being observed) in the input dataset and the output of the (linear) function of the independent variable. Some sources consider OLS to be linear regression. Geometrically, this is seen as the sum of the squared distances, parallel to the axis of the dependent variable, between each data point in the set and the corresponding point on the regression ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Prior Distribution
A prior probability distribution of an uncertain quantity, simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the relative proportions of voters who will vote for a particular politician in a future election. The unknown quantity may be a parameter of the model or a latent variable rather than an observable variable. In Bayesian statistics, Bayes' rule prescribes how to update the prior with new information to obtain the posterior probability distribution, which is the conditional distribution of the uncertain quantity given new data. Historically, the choice of priors was often constrained to a conjugate family of a given likelihood function, so that it would result in a tractable posterior of the same family. The widespread availability of Markov chain Monte Carlo methods, however, has made this less of a concern. There are many ways to constru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE