Compressometer
   HOME
*



picture info

Compressometer
A compressometer is a device used to determine the strain or deformation of a specimen while measuring the compressive strength of concrete specimens, generally a cylinder. It can be used for rock, concrete, soils, and other materials. For concrete, the device usually comprises two steel rings for clamping to the specimen and two gauge length bars attached to the ring. When the compressive load is applied, the strain value is registered from the compressometer. Generally, a data logger is used to record the strain. The stress strain curve is then used to determine the static Young's modulus of elasticity and Poisson's ratio of concrete. ASTM C469 describes about the instrument. See also * Extensometer * Strain gauge References

* ASTM International C469 Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression Materials testing Test equipment Measuring instruments {{tool-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Compressometer For Testing Concrete Stress-strain Relation
A compressometer is a device used to determine the strain or deformation of a specimen while measuring the compressive strength of concrete specimens, generally a cylinder. It can be used for rock, concrete, soils, and other materials. For concrete, the device usually comprises two steel rings for clamping to the specimen and two gauge length bars attached to the ring. When the compressive load is applied, the strain value is registered from the compressometer. Generally, a data logger is used to record the strain. The stress strain curve is then used to determine the static Young's modulus of elasticity and Poisson's ratio of concrete. ASTM C469 describes about the instrument. See also * Extensometer * Strain gauge References

* ASTM International C469 Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression Materials testing Test equipment Measuring instruments {{tool-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compressive Strength
In mechanics, compressive strength or compression strength is the capacity of a material or structure to withstand loads tending to reduce size (as opposed to tensile strength which withstands loads tending to elongate). In other words, compressive strength resists compression (being pushed together), whereas tensile strength resists tension (being pulled apart). In the study of strength of materials, tensile strength, compressive strength, and shear strength can be analyzed independently. Some materials fracture at their compressive strength limit; others deform irreversibly, so a given amount of deformation may be considered as the limit for compressive load. Compressive strength is a key value for design of structures. Compressive strength is often measured on a universal testing machine. Measurements of compressive strength are affected by the specific test method and conditions of measurement. Compressive strengths are usually reported in relationship to a specific tec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Extensometer
An extensometer is a device that is used to measure changes in the length of an object. It is useful for stress-strain measurements and tensile tests. Its name comes from "extension-meter". It was invented by Charles Huston who described it in an article in the ''Journal of the Franklin Institute'' in 1879. Huston later gave the rights to Fairbanks & Ewing, a major manufacturer of testing machines and scales. Types There are two main types of extensometers: ''contact'' and ''non-contact''. Contact ''Contact extensometers'' have been used for many years and are also subdivided into two further categories. The first type of contact extensometer is called a ''clip-on'' extensometer. These devices are used for applications where high precision strain measurement is required (most ASTM based tests). They come in many configurations and can measure displacements from very small to relatively large (less than a mm to over 100 mm). They have the advantage of lower cost and ea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Strain Gauge
A strain gauge (also spelled strain gage) is a device used to measure strain on an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which supports a metallic foil pattern. The gauge is attached to the object by a suitable adhesive, such as cyanoacrylate. As the object is deformed, the foil is deformed, causing its electrical resistance to change. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor. History Edward E. Simmons and Professor Arthur C. Ruge independently invented the strain gauge. Simmons was involved in a research project by Dätwyler and Clark at Caltech between 1936 and 1938. They researched the stress-strain behavior of metals under shock loads. Simmon came up with an original way to measure the force introduced into the sample by equipping a dynamometer with fine resistance wires ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Logger
A data logger (also datalogger or data recorder) is an electronic device that records data over time or about location either with a built-in instrument or sensor or via external instruments and sensors. Increasingly, but not entirely, they are based on a digital processor (or computer), and called digital data loggers (DDL). They generally are small, battery-powered, portable, and equipped with a microprocessor, internal memory for data storage, and sensors. Some data loggers interface with a personal computer and use software to activate the data logger and view and analyze the collected data, while others have a local interface device (keypad, LCD) and can be used as a stand-alone device. Data loggers vary from general-purpose types for a range of measurement applications to very specific devices for measuring in one environment or application type only. It is common for general purpose types to be programmable; however, many remain as static machines with only a limited n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Young's Modulus
Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied lengthwise. It quantifies the relationship between tensile/compressive stress \sigma (force per unit area) and axial strain \varepsilon (proportional deformation) in the linear elastic region of a material and is determined using the formula: E = \frac Young's moduli are typically so large that they are expressed not in pascals but in gigapascals (GPa). Example: * Silly Putty (increasing pressure: length increases quickly, meaning tiny E) * Aluminum (increasing pressure: length increases slowly, meaning high E) Higher Young's modulus corresponds to greater (lengthwise) stiffness. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler. The first experime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poisson's Ratio
In materials science and solid mechanics, Poisson's ratio \nu ( nu) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading. The value of Poisson's ratio is the negative of the ratio of transverse strain to axial strain. For small values of these changes, \nu is the amount of transversal elongation divided by the amount of axial compression. Most materials have Poisson's ratio values ranging between 0.0 and 0.5. For soft materials, such as rubber, where the bulk modulus is much higher than the shear modulus, Poisson's ratio is near 0.5. For open-cell polymer foams, Poisson's ratio is near zero, since the cells tend to collapse in compression. Many typical solids have Poisson's ratios in the range of 0.2–0.3. The ratio is named after the French mathematician and physicist Siméon Poisson. Origin Poisson's ratio is a measure of the Poisson effect, the phenomenon in which a ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ASTM International
ASTM International, formerly known as American Society for Testing and Materials, is an international standards organization that develops and publishes voluntary consensus technical standards for a wide range of materials, products, systems, and services. Some 12,575 ASTM voluntary consensus standards operate globally. The organization's headquarters is in West Conshohocken, Pennsylvania, about northwest of Philadelphia. It is founded in 1902 as the American Section of the International Association for Testing Materials (see also International Organization for Standardization). History A group of scientists and engineers, led by Charles Dudley, formed ASTM in 1898 to address the frequent rail breaks affecting the fast-growing railroad industry. The group developed a standard for the steel used to fabricate rails. Originally called the "American Society for Testing Materials" in 1902, it became the "American Society for Testing And Materials" in 1961. In 2001, ASTM official ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Materials Testing
Materials testing is used to assess product quality, functionality, safety, reliability and toxicity of both materials and electronic devices. Some applications of materials testing include defect detection, failure analysis, material development, basic materials science research, and the verification of material properties for application trials. This is a list of organizations and companies that publish materials testing standards or offer materials testing laboratory services. International organizations for materials testing These organizations create materials testing standards or conduct active research in the fields of materials analysis and reliability testing. * American Association of Textile Chemists and Colorists (AATCC) * American National Standards Institute (ANSI) * American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) * American Society of Mechanical Engineers (ASME) * ASTM International * Federal Institute for Materials Research and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Test Equipment
Test(s), testing, or TEST may refer to: * Test (assessment), an educational assessment intended to measure the respondents' knowledge or other abilities Arts and entertainment * ''Test'' (2013 film), an American film * ''Test'' (2014 film), a Russian film * ''Test'' (group), a jazz collective * ''Tests'' (album), a 1998 album by The Microphones Computing * .test, a reserved top-level domain * test (Unix), a Unix command for evaluating conditional expressions * TEST (x86 instruction), an x86 assembly language instruction People * Test (wrestler), ring name for Andrew Martin (1975–2009), Canadian professional wrestler * John Test (1771–1849), American politician * Zack Test (born 1989), American rugby union player Science and technology * Proof test * Stress testing * Test (biology), the shell of sea urchins and certain microorganisms * Test equipment Sports * Test cricket, a series of matches played by two national representative teams * Test match (rugby league), a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]