Complexity Index
   HOME
*



picture info

Complexity Index
In modern computer science and statistics, the complexity index of a function denotes the level of informational content, which in turn affects the difficulty of learning the function from examples. This is different from computational complexity, which is the difficulty to compute a function. Complexity indices characterize the entire class of functions to which the one we are interested in belongs. Focusing on Boolean functions, the ''detail'' of a class \mathsf C of Boolean functions ''c'' essentially denotes how deeply the class is articulated. Technical definition To identify this index we must first define a ''sentry function'' of \mathsf C. Let us focus for a moment on a single function ''c'', call it a ''concept'' defined on a set \mathcal X of elements that we may figure as points in a Euclidean space. In this framework, the above function associates to ''c'' a set of points that, since are defined to be external to the concept, prevent it from expanding into another fun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', Oxford University Press. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Supervised Learning
Supervised learning (SL) is a machine learning paradigm for problems where the available data consists of labelled examples, meaning that each data point contains features (covariates) and an associated label. The goal of supervised learning algorithms is learning a function that maps feature vectors (inputs) to labels (output), based on example input-output pairs. It infers a function from ' consisting of a set of ''training examples''. In supervised learning, each example is a ''pair'' consisting of an input object (typically a vector) and a desired output value (also called the ''supervisory signal''). A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples. An optimal scenario will allow for the algorithm to correctly determine the class labels for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way (see inductive b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Analysis Of Algorithms
In computer science, the analysis of algorithms is the process of finding the computational complexity of algorithms—the amount of time, storage, or other resources needed to execute them. Usually, this involves determining a function that relates the size of an algorithm's input to the number of steps it takes (its time complexity) or the number of storage locations it uses (its space complexity). An algorithm is said to be efficient when this function's values are small, or grow slowly compared to a growth in the size of the input. Different inputs of the same size may cause the algorithm to have different behavior, so best, worst and average case descriptions might all be of practical interest. When not otherwise specified, the function describing the performance of an algorithm is usually an upper bound, determined from the worst case inputs to the algorithm. The term "analysis of algorithms" was coined by Donald Knuth. Algorithm analysis is an important part of a broader ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Function
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually , or ). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory. A Boolean function takes the form f:\^k \to \, where \ is known as the Boolean domain and k is a non-negative integer called the arity of the function. In the case where k=0, the function is a constant element of \. A Boolean function with multiple outputs, f:\^k \to \^m with m>1 is a ''vectorial'' or ''vector-valued'' Boolean function (an S-box in symmetric cryptography). There are 2^ different Boolean functions with k arguments; equal to the number of different truth tables with 2^k entries. Every k-ary Boolean function can be expressed as a propositional formula in k variables x_1,...,x_k, and two propositional formulas are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension (mathematics), dimension, including the three-dimensional space and the ''Euclidean plane'' (dimension two). The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient History of geometry#Greek geometry, Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the Greek mathematics, ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of ''mathematical proof, proving'' all properties of the space as theorems, by starting from a few fundamental properties, called ''postulates'', which either were considered as eviden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Function
In mathematics, a partial function from a set to a set is a function from a subset of (possibly itself) to . The subset , that is, the domain of viewed as a function, is called the domain of definition of . If equals , that is, if is defined on every element in , then is said to be total. More technically, a partial function is a binary relation over two sets that associates every element of the first set to ''at most'' one element of the second set; it is thus a functional binary relation. It generalizes the concept of a (total) function by not requiring every element of the first set to be associated to ''exactly'' one element of the second set. A partial function is often used when its exact domain of definition is not known or difficult to specify. This is the case in calculus, where, for example, the quotient of two functions is a partial function whose domain of definition cannot contain the zeros of the denominator. For this reason, in calculus, and more ge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




VC Dimension
VC may refer to: Military decorations * Victoria Cross, a military decoration awarded by the United Kingdom and also by certain Commonwealth nations ** Victoria Cross for Australia ** Victoria Cross (Canada) ** Victoria Cross for New Zealand * Victorious Cross, Idi Amin's self-bestowed military decoration Organisations * Ocean Airlines (IATA airline designator 2003-2008), Italian cargo airline * Voyageur Airways (IATA airline designator since 1968), Canadian charter airline * Visual Communications, an Asian-Pacific-American media arts organization in Los Angeles, US * Viet Cong (also Victor Charlie or Vietnamese Communists), a political and military organization from the Vietnam War (1959–1975) Education * Vanier College, Canada * Vassar College, US * Velez College, Philippines * Virginia College, US Places * Saint Vincent and the Grenadines (ISO country code), a state in the Caribbean * Sri Lanka (ICAO airport prefix code) * Watsonian vice-counties, subdivisions of Great Brita ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rademacher Complexity
In computational learning theory (machine learning and theory of computation), Rademacher complexity, named after Hans Rademacher, measures richness of a class of real-valued functions with respect to a probability distribution. Definitions Rademacher complexity of a set Given a set A\subseteq \mathbb^m, the Rademacher complexity of ''A'' is defined as follows:Chapter 26 in : \operatorname(A) := \frac \mathbb_\sigma \left \sup_ \sum_^m \sigma_i a_i \right where \sigma_1, \sigma_2, \dots, \sigma_m are independent random variables drawn from the Rademacher distribution i.e. \Pr(\sigma_i = +1) = \Pr(\sigma_i = -1) = 1/2 for i=1,2,\dots,m, and a=(a_1, \ldots, a_m). Some authors take the absolute value of the sum before taking the supremum, but if A is symmetric this makes no difference. Rademacher complexity of a function class Let S=(z_1, z_2, \dots, z_m) \in Z^m be a sample of points and consider a function class \mathcal of real-valued functions over Z^m. Then, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]