Collapsar (band)
   HOME
*



picture info

Collapsar (band)
A collapsar is a star which has undergone gravitational collapse. When a star no longer has enough fuel for significant fusion reactions, there are three possible outcomes, depending on the remnant star's mass: If it is less than the Chandrasekhar limit (1.4 solar masses), the star will stabilize and shrink, becoming a white dwarf; between the Chandrasekhar limit and the Tolman–Oppenheimer–Volkoff limit (approximately 3 solar masses), it will become a neutron star; and above the Tolman–Oppenheimer–Volkoff limit, the star will become a black hole. However, it is theorized that the high density of neutron star cores allow for quark matter and, as a result, a star that is more massive than even the Tolman–Oppenheimer–Volkoff limit, yet still is not a black hole. See also * List of collapsars This list of black holes (and stars considered probable candidates) is organized by mass (including black holes of undetermined mass); some items in this list are galaxies or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Collapsar As Initial Mass-metallicity
A collapsar is a star which has undergone gravitational collapse. When a star no longer has enough fuel for significant fusion reactions, there are three possible outcomes, depending on the star's mass: If it is less than the Chandrasekhar limit (1.4 solar masses), the star will stabilize and shrink, becoming a white dwarf; between the Chandrasekhar limit and the Tolman–Oppenheimer–Volkoff limit (approximately 3 solar masses), it will become a neutron star; and above the Tolman–Oppenheimer–Volkoff limit, the star will become a black hole. However, it is theorized that the high density of neutron star cores allow for quark matter and, as a result, a star that is more massive than even the Tolman–Oppenheimer–Volkoff limit, yet still isn't a black hole. See also * List of collapsars This list of black holes (and stars considered probable candidates) is organized by mass (including black holes of undetermined mass); some items in this list are galaxies or star clus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Star
A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sky, night, but their immense distances from Earth make them appear as fixed stars, fixed points of light. The most prominent stars have been categorised into constellations and asterism (astronomy), asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated to stars. Only about 4,000 of these stars are visible to the naked eye, all within the Milky Way galaxy. A star's life star formation, begins with the gravitational collapse of a gaseous nebula of material composed primarily of hydrogen, along with helium and trace amounts of heavier elements. Its stellar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chandrasekhar Limit
The Chandrasekhar limit () is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about (). White dwarfs resist gravitational collapse primarily through electron degeneracy pressure, compared to main sequence stars, which resist collapse through thermal pressure. The Chandrasekhar limit is the mass above which electron degeneracy pressure in the star's core is insufficient to balance the star's own gravitational self-attraction. Consequently, a white dwarf with a mass greater than the limit is subject to further gravitational collapse, evolving into a different type of stellar remnant, such as a neutron star or black hole. Those with masses up to the limit remain stable as white dwarfs.Sean Carroll, Ph.D., Caltech, 2007, The Teaching Company, ''Dark Matter, Dark Energy: The Dark Side of the Universe'', Guidebook Part 2 page 44, Accessed Oct. 7, 2013, "...Chandrasekhar limit: The maximum mass of a white dwarf star, about 1.4 t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

White Dwarf
A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes from the emission of residual thermal energy; no fusion takes place in a white dwarf. The nearest known white dwarf is at 8.6 light years, the smaller component of the Sirius binary star. There are currently thought to be eight white dwarfs among the hundred star systems nearest the Sun. The unusual faintness of white dwarfs was first recognized in 1910. The name ''white dwarf'' was coined by Willem Luyten in 1922. White dwarfs are thought to be the final evolutionary state of stars whose mass is not high enough to become a neutron star or black hole. This includes over 97% of the other stars in the Milky Way. After the hydrogen- fusing period of a main-sequence star of low or medium mass ends, such a star will expand to a red giant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tolman–Oppenheimer–Volkoff Limit
The Tolman–Oppenheimer–Volkoff limit (or TOV limit) is an upper bound to the mass of cold, nonrotating neutron stars, analogous to the Chandrasekhar limit for white dwarf stars. If the mass of the said star reaches the limit it will collapse to a denser form. Theoretical work in 1996 placed the limit at approximately 1.5 to 3.0 solar masses, corresponding to an original stellar mass of 15 to 20 solar masses; additional work in the same year gave a more precise range of 2.2 to 2.9 solar masses. Observations of GW170817, the first gravitational wave event due to merging neutron stars (which are thought to have collapsed into a black hole within a few seconds after merging), placed the limit at close to 2.17  (solar masses). This value was inconsistent with short gamma-ray burst X-ray plateau data however, which suggested a value of ''M''TOV = 2.37 . Reanalysis of the GW170817 event data in 2019 resulted in a higher value of ''M''TOV = 2.3 . If GW ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solar Mass
The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass of the Sun. This equates to about two nonillion (short scale), two quintillion (long scale) kilograms or 2000 quettagrams: The solar mass is about times the mass of Earth (), or times the mass of Jupiter (). History of measurement The value of the gravitational constant was first derived from measurements that were made by Henry Cavendish in 1798 with a torsion balance. The value he obtained differs by only 1% from the modern value, but was not as precise. The diurnal parallax of the Sun was accurately measured during the transits of Venus in 1761 and 1769, yielding a value of (9  arcseconds, compared to the present value of ). From the value of the diurnal parallax, one can determine the distance to the Sun from the geometry o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutron Star
A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. white holes, quark stars, and strange stars), neutron stars are the smallest and densest currently known class of stellar objects. Neutron stars have a radius on the order of and a mass of about 1.4 solar masses. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei. Once formed, they no longer actively generate heat, and cool over time; however, they may still evolve further through collision or accretion. Most of the basic models for these objects imply that neutron stars are composed almost entirely of neutrons (subatomic particles with no net electrical charge and with slightly larger mass than protons); the electro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Black Hole
A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary (topology), boundary of no escape is called the event horizon. Although it has a great effect on the fate and circumstances of an object crossing it, it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with thermal radiation, the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly. Obje ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quark Matter
Quark matter or QCD matter (quantum chromodynamics, quantum chromodynamic) refers to any of a number of hypothetical phase (matter), phases of matter whose degrees of freedom (physics and chemistry), degrees of freedom include quarks and gluons, of which the prominent example is Quark–gluon plasma, quark-gluon plasma. Several series of conferences in 2019, 2020, and 2021 were devoted to this topic. Quarks are liberated into quark matter at extremely high temperatures and/or densities, and some of them are still only theoretical as they require conditions so extreme that they cannot be produced in any laboratory, especially not at equilibrium conditions. Under these extreme conditions, the familiar structure of matter, where the basic constituents are atomic nucleus, nuclei (consisting of nucleons which are bound states of quarks) and electrons, is disrupted. In quark matter it is more appropriate to treat the quarks themselves as the basic degrees of freedom. In the standard mode ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




List Of Collapsars
This list of black holes (and stars considered probable candidates) is organized by mass (including black holes of undetermined mass); some items in this list are galaxies or star clusters that are believed to be organized around a black hole. Messier and New General Catalogue designations are given where possible. Supermassive black holes and candidates * 1ES 2344+514 * Ton 618 (this quasar has possibly the biggest black hole ever found, estimated at 66 billion solar masses) * 3C 371 * 4C +37.11 (this radio galaxy is believed to have binary supermassive black holes) * AP Lib *S5 0014+81 (said to be a compact hyperluminous quasar, estimated at 40 billion solar masses) 17:53:24 GMT. * APM 08279+5255 (contains one of the largest black holes, estimated at 10-23 billion solar masses; previous candidate for largest) * Arp 220 * Centaurus A * Fornax A * HE0450-2958 * IC 1459 * Messier 31 (or the Andromeda Galaxy) * Messier 32 * Messier 51 (or the Whirlpool Galaxy) * Messier ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shell Collapsar
A shell collapsar is a hypothetical compact astrophysical object, which might constitute an alternative explanation for observations of astronomical black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ... candidates. It is a collapsed star that resembles a black hole, but is formed without a point-like central singularity and without an event horizon. The model of the shell collapsar was first proposed by Trevor W. Marshall and allows the formation of neutron stars beyond the Tolman–Oppenheimer–Volkoff limit of 0.7 M☉. A shell collapsar is void inside apart from intense gravitational field energy there. According to Newton's shell theorem, the acceleration of gravity in the center of each celestial body is zero and rises to its surface (cf. gravitational field in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma-ray Burst
In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies. They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten milliseconds to several hours. After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave and radio). The intense radiation of most observed GRBs is thought to be released during a supernova or superluminous supernova as a high-mass star implodes to form a neutron star or a black hole. A subclass of GRBs appear to originate from the merger of binary neutron stars. The sources of most GRBs are billions of light years away from Earth, implying that the explosions are both extremely energetic (a typical burst releases as much energy in a few seconds as the Sun will in its entire 10-billion-year lifetime) and extremely rare (a few per galaxy per milli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]