Cold Fission
   HOME





Cold Fission
Cold fission or cold nuclear fission is defined as involving nuclear fission, fission events for which fission fragments have such low excitation energy that no neutrons or gamma ray, gammas are emitted. Cold fission events have so low a probability of occurrence that it is necessary to use a high-flux nuclear Nuclear reactor technology, reactor to study them. According to research first published in 1981, the first observation of cold fission events was in experiments on fission induced by thermal neutrons of uranium 233, uranium 235, and plutonium 239 using the high-flux reactor at the Institut Laue-Langevin in Grenoble, France. Other experiments on cold fission were also done involving Curium-248, curium 248 and californium-252, californium 252. A unified approach of cluster decay, alpha decay and cold fission was developed by Dorin N. Poenaru et al. A phenomenological interpretation was proposed by Gönnenwein and Duarte ''et al.'' The importance of cold fission phenomena li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Nuclear Fission
Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay. Nuclear fission was discovered by chemists Otto Hahn and Fritz Strassmann and physicists Lise Meitner and Otto Robert Frisch. Hahn and Strassmann proved that a fission reaction had taken place on 19 December 1938, and Meitner and her nephew Frisch explained it theoretically in January 1939. Frisch named the process "fission" by analogy with biological fission of living cells. In their second publication on nuclear fission in February 1939, Hahn and Strassmann predicted the existence and liberation of additional neutrons during the fission process, opening up the possibility of a nuclear chain reaction. For heavy nuclides, it is an exothermic reaction which can release large amounts of energy both as electromagnetic radiat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Alpha Decay
Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an atomic number that is reduced by two. An alpha particle is identical to the nucleus of a helium-4 atom, which consists of two protons and two neutrons. It has a charge of and a mass of , and is represented as ^_\alpha. For example, uranium-238 undergoes alpha decay to form thorium-234. While alpha particles have a charge , this is not usually shown because a nuclear equation describes a nuclear reaction without considering the electrons – a convention that does not imply that the nuclei necessarily occur in neutral atoms. Alpha decay typically occurs in the heaviest nuclides. Theoretically, it can occur only in nuclei somewhat heavier than nickel (element 28), where the overall binding energy per nucleon is no longer a maximum a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Nuclear Chemistry
Nuclear chemistry is the sub-field of chemistry dealing with radioactivity, nuclear processes, and transformations in the nuclei of atoms, such as nuclear transmutation and nuclear properties. It is the chemistry of radioactive elements such as the actinides, radium and radon together with the chemistry associated with equipment (such as nuclear reactors) which are designed to perform nuclear processes. This includes the corrosion of surfaces and the behavior under conditions of both normal and abnormal operation (such as during an accident). An important area is the behavior of objects and materials after being placed into a nuclear waste storage or disposal site. It includes the study of the chemical effects resulting from the absorption of radiation within living animals, plants, and other materials. The radiation chemistry controls much of radiation biology as radiation has an effect on living things at the molecular scale. To explain it another way, the radiation alters th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Cold Fusion
Cold fusion is a hypothesized type of nuclear reaction that would occur at, or near, room temperature. It would contrast starkly with the nuclear fusion, "hot" fusion that is known to take place naturally within Main sequence, stars and artificially in Thermonuclear weapon, hydrogen bombs and prototype Fusion power, fusion reactors under immense pressure and at temperatures of millions of degrees, and be distinguished from muon-catalyzed fusion. There is currently no accepted theoretical model that would allow cold fusion to occur. In 1989, two electrochemistry, electrochemists at the University of Utah, Martin Fleischmann and Stanley Pons, reported that their apparatus had produced anomalous heat ("excess heat") of a magnitude they asserted would defy explanation except in terms of nuclear processes. They further reported measuring small amounts of nuclear reaction byproducts, including neutrons and tritium. ("It is inconceivable that this [amount of heat] could be due to anyth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Nucleon Pair Breaking
Nucleon pair breaking in fission has been an important topic in nuclear physics for decades. "Nucleon pair" refers to nucleon pairing effects which strongly influence the nuclear properties of a nuclide. The most measured quantities in research on nuclear fission are the charge and mass fragments yields for uranium-235 and other fissile nuclides. In this sense, experimental results on charge distribution for low-energy fission of actinides present a preference to an even ''Z'' fragment, which is called odd-even effect on charge yield. The importance of these distributions is because they are the result of rearrangement of nucleons on the fission process due to the interplay between collective variables and individual particle levels; therefore they permit to understand several aspects of dynamics of fission process. The process from saddle (when nucleus begins its irreversible evolution to fragmentation) to scission point (when fragments are formed and nuclear interaction betw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE