Closest Pair Of Points
   HOME
*



picture info

Closest Pair Of Points
The closest pair of points problem or closest pair problem is a problem of computational geometry: given n points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane was among the first geometric problems that were treated at the origins of the systematic study of the computational complexity of geometric algorithms. Time bounds Randomized algorithms that solve the problem in linear time are known, in Euclidean spaces whose dimension is treated as a constant for the purposes of asymptotic analysis. This is significantly faster than the O(n^2) time (expressed here in big O notation) that would be obtained by a naive algorithm of finding distances between all pairs of points and selecting the smallest. It is also possible to solve the problem without randomization, in random-access machine models of computation with unlimited memory that allow the use of the floor function, in near-linear O(n\log\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Closest Pair Of Points
The closest pair of points problem or closest pair problem is a problem of computational geometry: given n points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane was among the first geometric problems that were treated at the origins of the systematic study of the computational complexity of geometric algorithms. Time bounds Randomized algorithms that solve the problem in linear time are known, in Euclidean spaces whose dimension is treated as a constant for the purposes of asymptotic analysis. This is significantly faster than the O(n^2) time (expressed here in big O notation) that would be obtained by a naive algorithm of finding distances between all pairs of points and selecting the smallest. It is also possible to solve the problem without randomization, in random-access machine models of computation with unlimited memory that allow the use of the floor function, in near-linear O(n\log\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sweep Line Algorithm
In computational geometry, a sweep line algorithm or plane sweep algorithm is an algorithmic paradigm that uses a conceptual ''sweep line'' or ''sweep surface'' to solve various problems in Euclidean space. It is one of the key techniques in computational geometry. The idea behind algorithms of this type is to imagine that a line (often a vertical line) is swept or moved across the plane, stopping at some points. Geometric operations are restricted to geometric objects that either intersect or are in the immediate vicinity of the sweep line whenever it stops, and the complete solution is available once the line has passed over all objects. History This approach may be traced to scanline algorithms of rendering in computer graphics, followed by exploiting this approach in early algorithms of integrated circuit layout design, in which a geometric description of an IC was processed in parallel strips, because the entire description could not fit into memory. Applications Application ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete & Computational Geometry
'' Discrete & Computational Geometry'' is a peer-reviewed mathematics journal published quarterly by Springer. Founded in 1986 by Jacob E. Goodman and Richard M. Pollack, the journal publishes articles on discrete geometry and computational geometry. Abstracting and indexing The journal is indexed in: * ''Mathematical Reviews'' * ''Zentralblatt MATH'' * ''Science Citation Index'' * ''Current Contents''/Engineering, Computing and Technology Notable articles The articles by Gil Kalai with a proof of a subexponential upper bound on the diameter of a polyhedron and by Samuel Ferguson on the Kepler conjecture, both published in Discrete & Computational geometry, earned their author the Fulkerson Prize The Fulkerson Prize for outstanding papers in the area of discrete mathematics is sponsored jointly by the Mathematical Optimization Society (MOS) and the American Mathematical Society (AMS). Up to three awards of $1,500 each are presented at e .... References External link ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SIAM Journal On Computing
The ''SIAM Journal on Computing'' is a scientific journal focusing on the mathematical and formal aspects of computer science. It is published by the Society for Industrial and Applied Mathematics (SIAM). Although its official ISO abbreviation is ''SIAM J. Comput.'', its publisher and contributors frequently use the shorter abbreviation ''SICOMP''. SICOMP typically hosts the special issues of the IEEE Annual Symposium on Foundations of Computer Science (FOCS) and the Annual ACM Symposium on Theory of Computing (STOC), where about 15% of papers published in FOCS and STOC each year are invited to these special issues. For example, Volume 48 contains 11 out of 85 papers published in FOCS 2016. References * External linksSIAM Journal on Computing
on

picture info

Bounding Box
In geometry, the minimum or smallest bounding or enclosing box for a point set in dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure are used, the minimum box is usually called accordingly, e.g., "minimum-perimeter bounding box". The minimum bounding box of a point set is the same as the minimum bounding box of its convex hull, a fact which may be used heuristically to speed up computation. The terms "box" and "hyperrectangle" come from their usage in the Cartesian coordinate system, where they are indeed visualized as a rectangle (two-dimensional case), rectangular parallelepiped (three-dimensional case), etc. In the two-dimensional case it is called the minimum bounding rectangle. Axis-aligned minimum bounding box The axis-aligned minimum bounding box (or AABB) for a given point set is its minimum bounding box subject to the constraint that the edges of the box are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Structure
In computer science, a data structure is a data organization, management, and storage format that is usually chosen for efficient access to data. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, i.e., it is an algebraic structure about data. Usage Data structures serve as the basis for abstract data types (ADT). The ADT defines the logical form of the data type. The data structure implements the physical form of the data type. Different types of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, relational databases commonly use B-tree indexes for data retrieval, while compiler implementations usually use hash tables to look up identifiers. Data structures provide a means to manage large amounts of data efficiently for uses such as large databases and internet indexing services. Usually, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Set (abstract Data Type)
In computer science, a set is an abstract data type that can store unique values, without any particular order. It is a computer implementation of the mathematical concept of a finite set. Unlike most other collection types, rather than retrieving a specific element from a set, one typically tests a value for membership in a set. Some set data structures are designed for static or frozen sets that do not change after they are constructed. Static sets allow only query operations on their elements — such as checking whether a given value is in the set, or enumerating the values in some arbitrary order. Other variants, called dynamic or mutable sets, allow also the insertion and deletion of elements from the set. A multiset is a special kind of set in which an element can appear multiple times in the set. Type theory In type theory, sets are generally identified with their indicator function (characteristic function): accordingly, a set of values of type A may be denoted by 2^ o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dynamic Problem (algorithms)
Dynamic problems in computational complexity theory are problems stated in terms of the changing input data. In the most general form a problem in this category is usually stated as follows: * Given a class of input objects, find efficient algorithms and data structures to answer a certain query about a set of input objects each time the input data is modified, i.e., objects are inserted or deleted. Problems of this class have the following measures of complexity: * Space the amount of memory space required to store the data structure; * Initialization time time required for the initial construction of the data structure; * Insertion time time required for the update of the data structure when one more input element is added; * Deletion time time required for the update of the data structure when an input element is deleted; * Query time time required to answer a query; * Other operations specific to the problem in question The overall set of computations for a dynamic problem i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximation Ratio
An approximation is anything that is intentionally similar but not exactly equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very near'' and the prefix ''ad-'' (''ad-'' before ''p'' becomes ap- by assimilation) meaning ''to''. Words like ''approximate'', ''approximately'' and ''approximation'' are used especially in technical or scientific contexts. In everyday English, words such as ''roughly'' or ''around'' are used with a similar meaning. It is often found abbreviated as ''approx.'' The term can be applied to various properties (e.g., value, quantity, image, description) that are nearly, but not exactly correct; similar, but not exactly the same (e.g., the approximate time was 10 o'clock). Although approximation is most often applied to numbers, it is also frequently applied to such things as mathematical functions, shapes, and physical laws. In science, approximation can refer to u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moore Neighborhood
In cellular automata, the Moore neighborhood is defined on a two-dimensional square lattice and is composed of a central cell and the eight cells that surround it. Name The neighborhood is named after Edward F. Moore, a pioneer of cellular automata theory. Importance It is one of the two most commonly used neighborhood types, the other one being the von Neumann neighborhood, which excludes the corner cells. The well known Conway's Game of Life, for example, uses the Moore neighborhood. It is similar to the notion of 8-connected pixels in computer graphics. The Moore neighbourhood of a cell is the cell itself and the cells at a Chebyshev distance of 1. The concept can be extended to higher dimensions, for example forming a 26-cell cubic neighborhood for a cellular automaton in three dimensions, as used by 3D Life. In dimension ''d,'' where 0 \le d, d \in \mathbb, the size of the neighborhood is 3''d'' − 1. In two dimensions, the number of cells in an ''ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hash Table
In computing, a hash table, also known as hash map, is a data structure that implements an associative array or dictionary. It is an abstract data type that maps keys to values. A hash table uses a hash function to compute an ''index'', also called a ''hash code'', into an array of ''buckets'' or ''slots'', from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored. Ideally, the hash function will assign each key to a unique bucket, but most hash table designs employ an imperfect hash function, which might cause hash ''collisions'' where the hash function generates the same index for more than one key. Such collisions are typically accommodated in some way. In a well-dimensioned hash table, the average time complexity for each lookup is independent of the number of elements stored in the table. Many hash table designs also allow arbitrary insertions and deletions of key–value pairs, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Lipton
Richard Jay Lipton (born September 6, 1946) is an American computer scientist who is Associate Dean of Research, Professor, and the Frederick G. Storey Chair in Computing in the College of Computing at the Georgia Institute of Technology. He has worked in computer science theory, cryptography, and DNA computing. Career In 1968, Lipton received his undergraduate degree in mathematics from Case Western Reserve University. In 1973, he received his Ph.D. from Carnegie Mellon University; his dissertation, supervised by David Parnas, is entitled ''On Synchronization Primitive Systems''. After graduating, Lipton taught at Yale 1973–1978, at Berkeley 1978–1980, and then at Princeton 1980–2000. Since 2000, Lipton has been at Georgia Tech. While at Princeton, Lipton worked in the field of DNA computing. Since 1996, Lipton has been the chief consulting scientist at Telcordia. In 1999, Lipton was elected a member of the National Academy of Engineering for the applicatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]