Clay Research Fellowship
   HOME
*





Clay Research Fellowship
The Clay Mathematics Institute (CMI) is a private, non-profit foundation dedicated to increasing and disseminating mathematical knowledge. Formerly based in Peterborough, New Hampshire, the corporate address is now in Denver, Colorado. CMI's scientific activities are managed from the President's office in Oxford, United Kingdom. It gives out various awards and sponsorships to promising mathematicians. The institute was founded in 1998 through the sponsorship of Boston businessman Landon T. Clay. Harvard mathematician Arthur Jaffe was the first president of CMI. While the institute is best known for its Millennium Prize Problems, it carries out a wide range of activities, including a postdoctoral program (ten Clay Research Fellows are supported currently), conferences, workshops, and summer schools. Governance The institute is run according to a standard structure comprising a scientific advisory committee that decides on grant-awarding and research proposals, and a board of direc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-Profit
A nonprofit organization (NPO) or non-profit organisation, also known as a non-business entity, not-for-profit organization, or nonprofit institution, is a legal entity organized and operated for a collective, public or social benefit, in contrast with an entity that operates as a business aiming to generate a profit for its owners. A nonprofit is subject to the non-distribution constraint: any revenues that exceed expenses must be committed to the organization's purpose, not taken by private parties. An array of organizations are nonprofit, including some political organizations, schools, business associations, churches, social clubs, and consumer cooperatives. Nonprofit entities may seek approval from governments to be tax-exempt, and some may also qualify to receive tax-deductible contributions, but an entity may incorporate as a nonprofit entity without securing tax-exempt status. Key aspects of nonprofits are accountability, trustworthiness, honesty, and openness to eve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Andrew Wiles
Sir Andrew John Wiles (born 11 April 1953) is an English mathematician and a Royal Society Research Professor at the University of Oxford, specializing in number theory. He is best known for proving Fermat's Last Theorem, for which he was awarded the 2016 Abel Prize and the 2017 Copley Medal by the Royal Society. He was appointed Knight Commander of the Order of the British Empire in 2000, and in 2018, was appointed the first Regius Professor of Mathematics at Oxford. Wiles is also a MacArthur Fellows Program, 1997 MacArthur Fellow. Education and early life Wiles was born on 11 April 1953 in Cambridge, England, Cambridge, England, the son of Maurice Wiles, Maurice Frank Wiles (1923–2005) and Patricia Wiles (née Mowll). From 1952-1955, his father worked as the chaplain at Ridley Hall, Cambridge, and later became the Regius Professor of Divinity at the University of Oxford. Wiles attended King's College School, Cambridge, and The Leys School, Cambridge. Wiles states that h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alain Connes
Alain Connes (; born 1 April 1947) is a French mathematician, and a theoretical physicist, known for his contributions to the study of operator algebras and noncommutative geometry. He is a professor at the , , Ohio State University and Vanderbilt University. He was awarded the Fields Medal in 1982. Career Source: Academic career timeline: (1966–1970) – Bachelor's degree from the École Normale Supérieure (now part of Paris Sciences et Lettres University). (1973) – doctorate from Pierre and Marie Curie University, Paris, France (1970–1974) – appointment at the French National Centre for Scientific Research, Paris (1975) – Queen's University at Kingston, Ontario, Canada (1976–1980) – the University of Paris VI (1979 – present) – the Institute of Advanced Scientific Studies, Bures-sur-Yvette, France (1981–1984) – the French National Centre for Scientific Research, Paris (1984–2017) – the , Paris (2003–2011) – Vanderbilt University, Na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Enrico Bombieri
Enrico Bombieri (born 26 November 1940, Milan) is an Italian mathematician, known for his work in analytic number theory, Diophantine geometry, complex analysis, and group theory. Bombieri is currently Professor Emeritus in the School of Mathematics at the Institute for Advanced Study in Princeton, New Jersey. Bombieri won the Fields Medal in 1974 for his contributions to large sieve mathematics, conceptualized by Linnick 1941, and its application to the distribution of prime numbers. Career Bombieri published his first mathematical paper in 1957 when he was 16 years old. In 1963 at age 22 he earned his first degree (Laurea) in mathematics from the Università degli Studi di Milano under the supervision of Giovanni Ricci and then studied at Trinity College, Cambridge with Harold Davenport. Bombieri was an assistant professor (1963–1965) and then a full professor (1965–1966) at the Università di Cagliari, at the Università di Pisa in 1966–1974, and then at the Scuola No ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Michael Atiyah
Sir Michael Francis Atiyah (; 22 April 1929 – 11 January 2019) was a British-Lebanese mathematician specialising in geometry. His contributions include the Atiyah–Singer index theorem and co-founding topological K-theory. He was awarded the Fields Medal in 1966 and the Abel Prize in 2004. Life Atiyah grew up in Sudan and Egypt but spent most of his academic life in the United Kingdom at the University of Oxford and the University of Cambridge and in the United States at the Institute for Advanced Study. He was the President of the Royal Society (1990–1995), founding director of the Isaac Newton Institute (1990–1996), master of Trinity College, Cambridge (1990–1997), chancellor of the University of Leicester (1995–2005), and the President of the Royal Society of Edinburgh (2005–2008). From 1997 until his death, he was an honorary professor in the University of Edinburgh. Atiyah's mathematical collaborators included Raoul Bott, Friedrich Hirzebruch and Isadore Sin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Birch And Swinnerton-Dyer Conjecture
In mathematics, the Birch and Swinnerton-Dyer conjecture (often called the Birch–Swinnerton-Dyer conjecture) describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory and is widely recognized as one of the most challenging mathematical problems. It is named after mathematicians Bryan John Birch and Peter Swinnerton-Dyer, who developed the conjecture during the first half of the 1960s with the help of machine computation. , only special cases of the conjecture have been proven. The modern formulation of the conjecture relates arithmetic data associated with an elliptic curve ''E'' over a number field ''K'' to the behaviour of the Hasse–Weil ''L''-function ''L''(''E'', ''s'') of ''E'' at ''s'' = 1. More specifically, it is conjectured that the rank of the abelian group ''E''(''K'') of points of ''E'' is the order of the zero of ''L''(''E'', ''s'') at ''s'' = 1, and the first non-zero ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Navier–Stokes Existence And Smoothness
The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering. Even more basic (and seemingly intuitive) properties of the solutions to Navier–Stokes have never been proven. For the three-dimensional system of equations, and given some initial conditions, mathematicians have neither proved that smooth solutions always exist, nor found any counter-examples. This is called the ''Navier–Stokes existence and smoothness'' problem. Since underst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Yang–Mills Existence And Mass Gap
The Yang–Mills existence and mass gap problem is an unsolved problem in mathematical physics and mathematics, and one of the seven Millennium Prize Problems defined by the Clay Mathematics Institute, which has offered a prize of US$1,000,000 for its solution. The problem is phrased as follows:Arthur Jaffe and Edward WittenQuantum Yang-Mills theory. Official problem description. :''Yang–Mills Existence and Mass Gap.'' Prove that for any compact simple gauge group G, a non-trivial quantum Yang–Mills theory exists on \mathbb^4 and has a mass gap Δ > 0. Existence includes establishing axiomatic properties at least as strong as those cited in , and . In this statement, a quantum Yang–Mills theory is a non-abelian quantum field theory similar to that underlying the Standard Model of particle physics; \mathbb^4 is Euclidean 4-space; the mass gap Δ is the mass of the least massive particle predicted by the theory. Therefore, the winner must prove that: * Yang–Mills th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grigori Perelman
Grigori Yakovlevich Perelman ( rus, links=no, Григорий Яковлевич Перельман, p=ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman, a=Ru-Grigori Yakovlevich Perelman.oga; born 13 June 1966) is a Russian mathematician who is known for his contributions to the fields of geometric analysis, Riemannian geometry, and geometric topology. He is widely regarded as one of the greatest living mathematicians. In the 1990s, partly in collaboration with Yuri Burago, Mikhael Gromov, and Anton Petrunin, he made contributions to the study of Alexandrov spaces. In 1994, he proved the soul conjecture in Riemannian geometry, which had been an open problem for the previous 20 years. In 2002 and 2003, he developed new techniques in the analysis of Ricci flow, and proved the Poincaré conjecture and Thurston's geometrization conjecture, the former of which had been a famous open problem in mathematics for the past century. The full details of Perelman's work were fil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poincaré Conjecture
In the mathematics, mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the Characterization (mathematics), characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured by Henri Poincaré in 1904, the Grigori Perelman's theorem concerns spaces that locally look like ordinary Euclidean space, three-dimensional space but which are finite in extent. Poincaré hypothesized that if such a space has the additional property that each path (topology), loop in the space can be continuously tightened to a point, then it is necessarily a 3-sphere, three-dimensional sphere. Attempts to resolve the conjecture drove much progress in the field of geometric topology during the 20th century. The Perelman's proof built upon Richard S. Hamilton's ideas of using the Ricci flow to solve the problem. By developing a number of breakthrough new techniques and results in the theory of Ricci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hodge Conjecture
In mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry and complex geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties. In simple terms, the Hodge conjecture asserts that the basic topological information like the number of holes in certain geometric spaces, complex algebraic varieties, can be understood by studying the possible nice shapes sitting inside those spaces, which look like zero sets of polynomial equations. The latter objects can be studied using algebra and the calculus of analytic functions, and this allows one to indirectly understand the broad shape and structure of often higher-dimensional spaces which can not be otherwise easily visualized. More specifically, the conjecture states that certain de Rham cohomology classes are algebraic; that is, they are sums of Poincaré duals of the homology classes of subvarieties. It was formulated by the Scottish mathematician William ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

P Versus NP
The P versus NP problem is a major unsolved problem in theoretical computer science. In informal terms, it asks whether every problem whose solution can be quickly verified can also be quickly solved. The informal term ''quickly'', used above, means the existence of an algorithm solving the task that runs in polynomial time, such that the time to complete the task varies as a polynomial function on the size of the input to the algorithm (as opposed to, say, exponential time). The general class of questions for which some algorithm can provide an answer in polynomial time is " P" or "class P". For some questions, there is no known way to find an answer quickly, but if one is provided with information showing what the answer is, it is possible to verify the answer quickly. The class of questions for which an answer can be ''verified'' in polynomial time is NP, which stands for "nondeterministic polynomial time".A nondeterministic Turing machine can move to a state that is not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]