Clausen Inequality
   HOME
*





Clausen Inequality
In mathematics, Clausen's formula, found by , expresses the square of a Gaussian hypergeometric series as a generalized hypergeometric series. It states :\;_F_1 \left begin a & b \\ a+b+1/2 \end ; x \right2 = \;_F_2 \left begin 2a & 2b &a+b \\ a+b+1/2 &2a+2b \end ; x \right/math> In particular it gives conditions for a hypergeometric series to be positive. This can be used to prove several inequalities, such as the Askey–Gasper inequality used in the proof of de Branges's theorem In complex analysis, de Branges's theorem, or the Bieberbach conjecture, is a theorem that gives a necessary condition on a holomorphic function in order for it to map the open unit disk of the complex plane injectively to the complex plane. It was .... References * * * For a detailed proof of Clausen's formula: {{Citation , last1=Milla , first1=Lorenz , title= A detailed proof of the Chudnovsky formula with means of basic complex analysis , arxiv=1809.00533 , year=2018 Special functions
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Hypergeometric Series
Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below. There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponymous adjective ''Gaussian'' is pronounced . Mathematics Algebra and linear algebra Geometry and differential geometry Number theory Cyclotomic fields *Gaussian period *Gaussian rational *Gauss sum, an exponential sum over Dirichlet characters ** Elliptic Gauss sum, an analog of a Gauss sum ** Quadratic Gauss sum Analysis, numerical analysis, vector calculus and calculus of variations Complex analysis and convex analysis *Gauss–Lucas theorem *Gauss's continued fraction, an analytic continued fraction derived from the hypergeometric functions * Gauss's criterion – described oEncyclopedia of Mathematics* Gauss's hypergeometric theorem, an identity on hypergeometric series * Gauss plane Statistics *Gauss– ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Hypergeometric Series
In mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by ''n'' is a rational function of ''n''. The series, if convergent, defines a generalized hypergeometric function, which may then be defined over a wider domain of the argument by analytic continuation. The generalized hypergeometric series is sometimes just called the hypergeometric series, though this term also sometimes just refers to the Gaussian hypergeometric series. Generalized hypergeometric functions include the (Gaussian) hypergeometric function and the confluent hypergeometric function as special cases, which in turn have many particular special functions as special cases, such as elementary functions, Bessel functions, and the classical orthogonal polynomials. Notation A hypergeometric series is formally defined as a power series :\beta_0 + \beta_1 z + \beta_2 z^2 + \dots = \sum_ \beta_n z^n in which the ratio of successive coefficients is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Askey–Gasper Inequality
In mathematics, the Askey–Gasper inequality is an inequality for Jacobi polynomials proved by and used in the proof of the Bieberbach conjecture. Statement It states that if \beta\geq 0, \alpha+\beta\geq -2, and -1\leq x\leq 1 then :\sum_^n \frac \ge 0 where :P_k^(x) is a Jacobi polynomial. The case when \beta=0 can also be written as :_3F_2 \left (-n,n+\alpha+2,\tfrac(\alpha+1);\tfrac(\alpha+3),\alpha+1;t \right)>0, \qquad 0\leq t-1. In this form, with a non-negative integer, the inequality was used by Louis de Branges in his proof of the Bieberbach conjecture. Proof gave a short proof of this inequality, by combining the identity :\begin \frac &\times _3F_2 \left (-n,n+\alpha+2,\tfrac(\alpha+1);\tfrac(\alpha+3),\alpha+1;t \right) = \\ &= \frac \times _3F_2\left (-n+2j,n-2j+\alpha+1,\tfrac(\alpha+1);\tfrac(\alpha+2),\alpha+1;t \right ) \end with the Clausen inequality. Generalizations give some generalizations of the Askey–Gasper inequality to basic hypergeometri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


De Branges's Theorem
In complex analysis, de Branges's theorem, or the Bieberbach conjecture, is a theorem that gives a necessary condition on a holomorphic function in order for it to map the open unit disk of the complex plane injectively to the complex plane. It was posed by and finally proven by . The statement concerns the Taylor coefficients a_n of a univalent function, i.e. a one-to-one holomorphic function that maps the unit disk into the complex plane, normalized as is always possible so that a_0=0 and a_1=1. That is, we consider a function defined on the open unit disk which is holomorphic and injective ('' univalent'') with Taylor series of the form :f(z)=z+\sum_ a_n z^n. Such functions are called ''schlicht''. The theorem then states that : , a_n, \leq n \quad \textn\geq 2. The Koebe function (see below) is a function in which a_n=n for all n, and it is schlicht, so we cannot find a stricter limit on the absolute value of the nth coefficient. Schlicht functions The normalizations : ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]