Class I PI 3-kinases
   HOME
*





Class I PI 3-kinases
Class I PI 3-kinases are a subgroup of the enzyme family, phosphoinositide 3-kinase that possess a common protein domain structure, substrate specificity, and method of activation. Class I PI 3-kinases are further divided into two subclasses, class IA PI 3-kinases and class IB PI 3-kinases. Class IA PI 3-kinases Class IA PI 3-kinases are activated by receptor tyrosine kinases (RTKs). There are three catalytic subunits that are classified as class IA PI 3-kinases: *p110α * p110β *p110δ There are currently five regulatory subunits that are known to associate with class IA PI 3-kinases catalytic subunits: *p85α and p85β * p55α and p55γ * p50α Class IB PI 3-kinases Class IB PI 3-kinases are activated by G-protein-coupled receptors (GPCRs). The only known class IB PI 3-kinase catalytic subunit is p110γ. There are two known regulatory subunits for p110γ: * p101 *p84/ p87PIKAP. See also * Phosphoinositide 3-kinase#Class I * Phosphoinositide 3-kinase inhibitor Phosp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Phosphoinositide 3-kinase
Phosphoinositide 3-kinases (PI3Ks), also called phosphatidylinositol 3-kinases, are a family of enzymes involved in cellular functions such as cell growth, proliferation, differentiation, motility, survival and intracellular trafficking, which in turn are involved in cancer. PI3Ks are a family of related intracellular signal transducer enzymes capable of phosphorylating the 3 position hydroxyl group of the inositol ring of phosphatidylinositol (PtdIns). The pathway, with oncogene PIK3CA and tumor suppressor gene PTEN, is implicated in the sensitivity of cancer tumors to insulin and IGF1, and in calorie restriction. Discovery The discovery of PI3Ks by Lewis Cantley and colleagues began with their identification of a previously unknown phosphoinositide kinase associated with the polyoma middle T protein. They observed unique substrate specificity and chromatographic properties of the products of the lipid kinase, leading to the discovery that this phosphoinositide kinase ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Phosphoinositide 3-kinase
Phosphoinositide 3-kinases (PI3Ks), also called phosphatidylinositol 3-kinases, are a family of enzymes involved in cellular functions such as cell growth, proliferation, differentiation, motility, survival and intracellular trafficking, which in turn are involved in cancer. PI3Ks are a family of related intracellular signal transducer enzymes capable of phosphorylating the 3 position hydroxyl group of the inositol ring of phosphatidylinositol (PtdIns). The pathway, with oncogene PIK3CA and tumor suppressor gene PTEN, is implicated in the sensitivity of cancer tumors to insulin and IGF1, and in calorie restriction. Discovery The discovery of PI3Ks by Lewis Cantley and colleagues began with their identification of a previously unknown phosphoinositide kinase associated with the polyoma middle T protein. They observed unique substrate specificity and chromatographic properties of the products of the lipid kinase, leading to the discovery that this phosphoinositide kinase ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




P87PIKAP
Within molecular biology, molecular and cell biology, p87PIKAP is a regulatory subunit of the type IB Phosphoinositide 3-Kinase p110γ that is highly expressed in the heart and is present in dendritic cells, macrophages, and neutrophils. It is also referred to as p84 and p87. Some studies have found P87PIKAP to have a role in carcinogenesis. References

Image:Intro scheme3.jpg, 300px, The context of the function of p87. {{protein-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PIK3R5
Phosphoinositide 3-kinase regulatory subunit 5 is an enzyme that in humans is encoded by the ''PIK3R5'' gene. Interactions PIK3R5 has been shown to interact with PIK3CG Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma isoform is an enzyme that in humans is encoded by the ''PIK3CG'' gene. Function This gene encodes a protein that belongs to the pi3/pi4-kinase family of proteins. The gene p .... References Further reading

* * * * * * * * {{gene-17-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

G-protein-coupled Receptors
G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily-related proteins that are cell surface receptors that detect molecules outside the cell and activate cellular responses. Coupling with G proteins, they are called seven-transmembrane receptors because they pass through the cell membrane seven times. Text was copied from this source, which is available under Attribution 2.5 Generic (CC BY 2.5) license. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. G protein-coupled receptors are found only in eukaryotes, including yeast, choanoflagellates, and an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P50α
P5 may refer to: In science and technology * 311P/PANSTARRS, also known as P/2013 P5 (PANSTARRS), an asteroid discovered by the Pan-STARRS telescope on 27 August 2013 * P5 Truss Segment, an element of the International Space Station * Period 5 of the periodic table of elements * Styx (moon), the fifth moon of the dwarf planet Pluto * Particle Physics Project Prioritization Panel, a scientific funding advisory group in the United States Vehicles * P-5 Hawk, a 1923 aircraft * Martin P5M Marlin, a flying boat * Rover P5 (commonly called 3-Litre and 3½ Litre), a group of automobiles produced from 1958–1973 * Palatine P 5, a 1908 locomotive * PRR P5, mixed-traffic electric locomotives constructed 1931–1935 * Protegé5, a 5-door sport-wagon produced by Mazda from 2002–2003 * Polikarpov P-5, Soviet passenger aircraft, modification of the R-5 In computing * P5 Glove, an input device for human-computer interaction * P5 (microarchitecture), a fifth-generation central pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




P85β
Phosphatidylinositol 3-kinase regulatory subunit beta is an enzyme that in humans is encoded by the ''PIK3R2'' gene. A recent study on gene expression indicated that the PIK3R2 gene might have a key role in pan-cancer prognosis. Interactions PIK3R2 has been shown to interact with: * CRKL * Cbl gene, * Epidermal growth factor, * FYN, * HER2/neu, * Macrophage colony-stimulating factor, and * PIK3CD. Clinical relevance PIK3R2 mutations were recently shown to be associated with polymicrogyria Polymicrogyria (PMG) is a condition that affects the development of the human brain by multiple small gyri ( microgyri) creating excessive folding of the brain leading to an abnormally thick cortex. This abnormality can affect either one region o .... References Further reading

* * * * * * * * * * * * * * * * * * * {{refend ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Receptor Tyrosine Kinases
Receptor tyrosine kinases (RTKs) are the high- affinity cell surface receptors for many polypeptide growth factors, cytokines, and hormones. Of the 90 unique tyrosine kinase genes identified in the human genome, 58 encode receptor tyrosine kinase proteins. Receptor tyrosine kinases have been shown not only to be key regulators of normal cellular processes but also to have a critical role in the development and progression of many types of cancer. Mutations in receptor tyrosine kinases lead to activation of a series of signalling cascades which have numerous effects on protein expression. Receptor tyrosine kinases are part of the larger family of protein tyrosine kinases, encompassing the receptor tyrosine kinase proteins which contain a transmembrane domain, as well as the non-receptor tyrosine kinases which do not possess transmembrane domains. History The first RTKs to be discovered were EGF and NGF in the 1960s, but the classification of receptor tyrosine kinases was not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P85α
Phosphatidylinositol 3-kinase regulatory subunit alpha is an enzyme that in humans is encoded by the ''PIK3R1'' gene. Function Phosphatidylinositol 3-kinase phosphorylates the inositol ring of phosphatidylinositol at the 3-prime position. The enzyme comprises a 110 kD catalytic subunit and a regulatory subunit of either 85, 55, or 50 kD. This gene encodes the 85 kD regulatory subunit. Phosphatidylinositol 3-kinase plays an important role in the metabolic actions of insulin, and a mutation in this gene has been associated with insulin resistance. Alternative splicing of this gene results in three transcript variants encoding different isoforms. Clinical significance Mutations in ''PIK3R1'' are implicated in cases of breast cancer. Mutations in PIK3R1 are associated to SHORT syndrome. Interactions PIK3R1 has been shown to interact with: * ADAM12, * BCAR1, * CBLB, * CD117, * CD28, * CD7, * CENTG1, * CBL, * EPHA2, * EPOR, * ERBB3, * EZR, * FCGR2A, * GA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Phosphoinositide 3-kinase
Phosphoinositide 3-kinases (PI3Ks), also called phosphatidylinositol 3-kinases, are a family of enzymes involved in cellular functions such as cell growth, proliferation, differentiation, motility, survival and intracellular trafficking, which in turn are involved in cancer. PI3Ks are a family of related intracellular signal transducer enzymes capable of phosphorylating the 3 position hydroxyl group of the inositol ring of phosphatidylinositol (PtdIns). The pathway, with oncogene PIK3CA and tumor suppressor gene PTEN, is implicated in the sensitivity of cancer tumors to insulin and IGF1, and in calorie restriction. Discovery The discovery of PI3Ks by Lewis Cantley and colleagues began with their identification of a previously unknown phosphoinositide kinase associated with the polyoma middle T protein. They observed unique substrate specificity and chromatographic properties of the products of the lipid kinase, leading to the discovery that this phosphoinositide kinase ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]