Cipher
In cryptography, a cipher (or cypher) is an algorithm for performing encryption or decryption—a series of welldefined steps that can be followed as a procedure. An alternative, less common term is ''encipherment''. To encipher or encode is to convert information into cipher or code. In common parlance, "cipher" is synonymous with "code", as they are both a set of steps that encrypt a message; however, the concepts are distinct in cryptography, especially classical cryptography. Codes generally substitute different length strings of characters in the output, while ciphers generally substitute the same number of characters as are input. There are exceptions and some cipher systems may use slightly more, or fewer, characters when output versus the number that were input. Codes operated by substituting according to a large codebook which linked a random string of characters or numbers to a word or phrase. For example, "UQJHSE" could be the code for "Proceed to the followi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Block Cipher
In cryptography, a block cipher is a deterministic algorithm operating on fixedlength groups of bits, called ''blocks''. Block ciphers are specified elementary components in the design of many cryptographic protocols and are widely used to encrypt large amounts of data, including in data exchange protocols. A block cipher uses blocks as an unvarying transformation. Even a secure block cipher is suitable for the encryption of only a single block of data at a time, using a fixed key. A multitude of modes of operation have been designed to allow their repeated use in a secure way to achieve the security goals of confidentiality and authenticity. However, block ciphers may also feature as building blocks in other cryptographic protocols, such as universal hash functions and pseudorandom number generators. Definition A block cipher consists of two paired algorithms, one for encryption, , and the other for decryption, . Both algorithms accept two inputs: an input block of size bi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Vigenère Cipher
The Vigenère cipher () is a method of encrypting alphabetic text by using a series of interwoven Caesar ciphers, based on the letters of a keyword. It employs a form of polyalphabetic substitution. First described by Giovan Battista Bellaso in 1553, the cipher is easy to understand and implement, but it resisted all attempts to break it until 1863, three centuries later. This earned it the description le chiffrage indéchiffrable (French for 'the indecipherable cipher'). Many people have tried to implement encryption schemes that are essentially Vigenère ciphers. In 1863, Friedrich Kasiski was the first to publish a general method of deciphering Vigenère ciphers. In the 19th century, the scheme was misattributed to Blaise de Vigenère (1523–1596) and so acquired its present name. History The very first welldocumented description of a polyalphabetic cipher was by Leon Battista Alberti around 1467 and used a metal cipher disk to switch between cipher alphabets. Albe ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Substitution Cipher
In cryptography, a substitution cipher is a method of encrypting in which units of plaintext are replaced with the ciphertext, in a defined manner, with the help of a key; the "units" may be single letters (the most common), pairs of letters, triplets of letters, mixtures of the above, and so forth. The receiver deciphers the text by performing the inverse substitution process to extract the original message. Substitution ciphers can be compared with transposition ciphers. In a transposition cipher, the units of the plaintext are rearranged in a different and usually quite complex order, but the units themselves are left unchanged. By contrast, in a substitution cipher, the units of the plaintext are retained in the same sequence in the ciphertext, but the units themselves are altered. There are a number of different types of substitution cipher. If the cipher operates on single letters, it is termed a simple substitution cipher; a cipher that operates on larger groups of letters ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and nonrepudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chipbased payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Stream Cipher
stream cipher is a symmetric key cipher where plaintext digits are combined with a pseudorandom cipher digit stream (keystream). In a stream cipher, each plaintext digit is encrypted one at a time with the corresponding digit of the keystream, to give a digit of the ciphertext stream. Since encryption of each digit is dependent on the current state of the cipher, it is also known as ''state cipher''. In practice, a digit is typically a bit and the combining operation is an exclusiveor (XOR). The pseudorandom keystream is typically generated serially from a random seed value using digital shift registers. The seed value serves as the cryptographic key for decrypting the ciphertext stream. Stream ciphers represent a different approach to symmetric encryption from block ciphers. Block ciphers operate on large blocks of digits with a fixed, unvarying transformation. This distinction is not always clearcut: in some modes of operation, a block cipher primitive is used in such ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cryptanalysis
Cryptanalysis (from the Greek ''kryptós'', "hidden", and ''analýein'', "to analyze") refers to the process of analyzing information systems in order to understand hidden aspects of the systems. Cryptanalysis is used to breach cryptographic security systems and gain access to the contents of encrypted messages, even if the cryptographic key is unknown. In addition to mathematical analysis of cryptographic algorithms, cryptanalysis includes the study of sidechannel attacks that do not target weaknesses in the cryptographic algorithms themselves, but instead exploit weaknesses in their implementation. Even though the goal has been the same, the methods and techniques of cryptanalysis have changed drastically through the history of cryptography, adapting to increasing cryptographic complexity, ranging from the penandpaper methods of the past, through machines like the British Bombes and Colossus computers at Bletchley Park in World War II, to the mathematically advanced ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

History Of Cryptography
Cryptography, the use of codes and ciphers to protect secrets, began thousands of years ago. Until recent decades, it has been the story of what might be called classical cryptography — that is, of methods of encryption that use pen and paper, or perhaps simple mechanical aids. In the early 20th century, the invention of complex mechanical and electromechanical machines, such as the Enigma rotor machine, provided more sophisticated and efficient means of encryption; and the subsequent introduction of electronics and computing has allowed elaborate schemes of still greater complexity, most of which are entirely unsuited to pen and paper. The development of cryptography has been paralleled by the development of cryptanalysis — the "breaking" of codes and ciphers. The discovery and application, early on, of frequency analysis to the reading of encrypted communications has, on occasion, altered the course of history. Thus the Zimmermann Telegram triggered the United States' ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Classical Cipher
In cryptography, a classical cipher is a type of cipher that was used historically but for the most part, has fallen into disuse. In contrast to modern cryptographic algorithms, most classical ciphers can be practically computed and solved by hand. However, they are also usually very simple to break with modern technology. The term includes the simple systems used since Greek and Roman times, the elaborate Renaissance ciphers, World War II cryptography such as the Enigma machine and beyond. In contrast, modern strong cryptography relies on new algorithms and computers developed since the 1970s. Types of classical ciphers Classical ciphers are often divided into ''transposition ciphers'' and ''substitution ciphers''. Substitution ciphers In a substitution cipher, letters (or groups of letters) are systematically replaced throughout the message for other letters (or groups of letters). A wellknown example of a substitution cipher is the Caesar cipher. To encrypt a message with t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Classical Cryptography
In cryptography, a classical cipher is a type of cipher that was used historically but for the most part, has fallen into disuse. In contrast to modern cryptographic algorithms, most classical ciphers can be practically computed and solved by hand. However, they are also usually very simple to break with modern technology. The term includes the simple systems used since Greek and Roman times, the elaborate Renaissance ciphers, World War II cryptography such as the Enigma machine and beyond. In contrast, modern strong cryptography relies on new algorithms and computers developed since the 1970s. Types of classical ciphers Classical ciphers are often divided into ''transposition ciphers'' and ''substitution ciphers''. Substitution ciphers In a substitution cipher, letters (or groups of letters) are systematically replaced throughout the message for other letters (or groups of letters). A wellknown example of a substitution cipher is the Caesar cipher. To encrypt a message with t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Transposition Cipher
In cryptography, a transposition cipher is a method of encryption which scrambles the positions of characters (''transposition'') without changing the characters themselves. Transposition ciphers reorder units of plaintext (typically characters or groups of characters) according to a regular system to produce a ciphertext which is a permutation of the plaintext. They differ from substitution ciphers, which do not change the position of units of plaintext but instead change the units themselves. Despite the difference between transposition and substitution operations, they are often combined, as in historical ciphers like the ADFGVX cipher or complex highquality encryption methods like the modern Advanced Encryption Standard (AES). General principle Plaintexts can be rearranged into a ciphertext using a key, scrambling the order of characters like the shuffled pieces of a jigsaw puzzle. The resulting message is hard to decipher without the key because there are many ways the c ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Onetime Pad
In cryptography, the onetime pad (OTP) is an encryption technique that cannot be cracked, but requires the use of a singleuse preshared key that is not smaller than the message being sent. In this technique, a plaintext is paired with a random secret key (also referred to as ''a onetime pad''). Then, each bit or character of the plaintext is encrypted by combining it with the corresponding bit or character from the pad using modular addition. The resulting ciphertext will be impossible to decrypt or break if the following four conditions are met: #The key must be at least as long as the plaintext. #The key must be random ( uniformly distributed in the set of all possible keys and independent of the plaintext), entirely sampled from a nonalgorithmic, chaotic source such as a hardware random number generator. It is not sufficient for OTP keys to pass statistical randomness tests as such tests cannot measure entropy, and the number of bits of entropy must be at least equa ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Ciphertext
In cryptography, ciphertext or cyphertext is the result of encryption performed on plaintext using an algorithm, called a cipher. Ciphertext is also known as encrypted or encoded information because it contains a form of the original plaintext that is unreadable by a human or computer without the proper cipher to decrypt it. This process prevents the loss of sensitive information via hacking. Decryption, the inverse of encryption, is the process of turning ciphertext into readable plaintext. Ciphertext is not to be confused with codetext because the latter is a result of a code, not a cipher. Conceptual underpinnings Let m\! be the plaintext message that Alice wants to secretly transmit to Bob and let E_k\! be the encryption cipher, where _k\! is a cryptographic key. Alice must first transform the plaintext into ciphertext, c\!, in order to securely send the message to Bob, as follows: : c = E_k(m). \! In a symmetrickey system, Bob knows Alice's encryption key. Once the m ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 