Chromium Monohydride
   HOME
*





Chromium Monohydride
Chromium(I) hydride, systematically named chromium hydride, is an inorganic compound with the chemical formula (also written as or CrH). It occurs naturally in some kinds of stars where it has been detected by its spectrum. However, molecular chromium(I) hydride with the formula CrH has been isolated in solid gas matrices. The molecular hydride is very reactive. As such the compound is not well characterised, although many of its properties have been calculated via computational chemistry. Molecular forms A. G. Gaydon first created CrH gas with an electric arc between chromium electrodes in a hydrogen air flame. CrH can be formed by the reaction of chromium metal vapour, created by an electrical discharge in the presence of hydrogen. The electric discharge breaks up the H2 molecules into reactive H atoms. So the reaction then proceeds as Cr(g) + H → CrH. Another method to make CrH is to react chromium carbonyl (Cr(CO)6) vapour with atomic hydrogen generated by an electri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iron(I) Hydride
Iron(I) hydride, systematically named iron hydride and poly(hydridoiron) is a solid inorganic compound with the chemical formula (also written or FeH). It is both thermodynamically and kinetically unstable toward decomposition at ambient temperature, and as such, little is known about its bulk properties. Iron(I) hydride is the simplest polymeric iron hydride. Due to its instability, it has no practical industrial uses. However, in metallurgical chemistry, iron(I) hydride is fundamental to certain forms of iron-hydrogen alloys. Nomenclature The systematic name ''iron hydride'', a valid IUPAC name, is constructed according to the compositional nomenclature. However, as the name is compositional in nature, it does not distinguish between compounds of the same stoichiometry, such as molecular species, which exhibit distinct chemical properties. The systematic names ''poly(hydridoiron)'' and ''poly errane(1)', also valid IUPAC names, are constructed according to the additive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermi Contact Term
The Fermi contact interaction is the magnetic interaction between an electron and an atomic nucleus. Its major manifestation is in electron paramagnetic resonance and nuclear magnetic resonance spectroscopies, where it is responsible for the appearance of isotropic hyperfine coupling. This requires that the electron occupy an s-orbital. The interaction is described with the parameter ''A'', which takes the units megahertz. The magnitude of ''A'' is given by this relationships : A = -\frac \pi \left \langle \boldsymbol_n \cdot \boldsymbol_e \right \rangle , \Psi (0), ^2\qquad \mbox and : A = -\frac \mu_0 \left \langle \boldsymbol_n \cdot \boldsymbol_e \right \rangle , \Psi(0), ^2, \qquad \mbox where ''A'' is the energy of the interaction, ''μ''''n'' is the nuclear magnetic moment, ''μ''''e'' is the electron magnetic dipole moment, Ψ(0) is the value of the electron wavefunction at the nucleus, and \left\langle \cdots \right\rangle denotes the quantum mechanical spin coupling. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chromium(II) Hydride
Chromium(II) hydride, systematically named chromium dihydride and poly­(dihydridochromium) is pale brown solid inorganic compound with the chemical formula (also written or ). Although it is thermodynamically unstable toward decomposition at ambient temperatures, it is kinetically metastable. Chromium(II) hydride is the second simplest polymeric chromium hydride (after chromium(I) hydride). In metallurgical chemistry, chromium(II) hydride is fundamental to certain forms of chromium-hydrogen alloys. Nomenclature The most common name for chromium(II) hydride is ''chromium dihydride'', following the IUPAC compositional nomen­clature. Because the compositional name does not distinguish between different compounds with stoichiometry , "chromium dihydride" is ambiguous between an unstable molecular species (see ) and the metastable (but common) polymeric form. Monomer The chromium(II) hydride monomer, is both thermodynamically and kinetically unstable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

R Cyg
R Cygni is a variable star of the Mira type in the constellation Cygnus, less than 4' from θ Cygni. This is a red giant star on the asymptotic giant branch located around 2,200 light years away. It is an S-type star ranging between spectral types S2.5,9e to S6,9e(Tc). Stars at this mass range and evolutionary stage are pulsationally unstable, displaying a variation in their light output. R Cygni has a maximum magnitude of 6.1 and a minimum magnitude of 14.4, with a period of 426.45 days. The variation of this star was discovered by English astronomer N. R. Pogson in 1852, and it has a history of recorded brightness measurements stretching back more than a century. R Cygni shows distinct period-doubling, where alternate maxima are of different brightness, hence the real period of pulsation could be considered to be twice that from one maximum to the next. The Catalog of Components of Double and Multiple Stars lists 10th magnitude BD+49 3065 as a companion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

L Dwarf
Brown dwarfs (also called failed stars) are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen (hydrogen-1, 1H) into helium in their cores, unlike a main sequence, main-sequence star. Instead, they have a mass between the most massive gas giant planets and the least massive stars, approximately 13 to 80 Jupiter mass, times that of Jupiter (). However, they can deuterium burning, fuse deuterium (deuterium, 2H), and the most massive ones (> ) can lithium burning, fuse lithium (lithium-7, 7Li). Astronomers classify self-luminous objects by spectral classification, spectral class, a distinction intimately tied to the surface temperature, and brown dwarfs occupy types M, L, T, and Y. As brown dwarfs do not undergo stable hydrogen fusion, they cool down over time, progressively passing through later spectral types as they age. Despite their name, to the naked eye, brown dwarfs would appear in different colors depending on their temperatur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

S-type Star
An S-type star (or just S star) is a cool giant with approximately equal quantities of carbon and oxygen in its atmosphere. The class was originally defined in 1922 by Paul Merrill for stars with unusual absorption lines and molecular bands now known to be due to s-process elements. The bands of zirconium monoxide (ZrO) are a defining feature of the S stars. The carbon stars have more carbon than oxygen in their atmospheres. In most stars, such as class M giants, the atmosphere is richer in oxygen than carbon and they are referred to as ''oxygen-rich stars''. S-type stars are intermediate between carbon stars and normal giants. They can be grouped into two classes: ''intrinsic'' S stars, which owe their spectra to convection of fusion products and s-process elements to the surface; and ''extrinsic'' S stars, which are formed through mass transfer in a binary system. The intrinsic S-type stars are on the most luminous portion of the asymptotic giant branch, a stage of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic Orbital
In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in any specific region around the atom's nucleus. The term ''atomic orbital'' may also refer to the physical region or space where the electron can be calculated to be present, as predicted by the particular mathematical form of the orbital. Each orbital in an atom is characterized by a set of values of the three quantum numbers , , and , which respectively correspond to the electron's energy, angular momentum, and an angular momentum vector component (magnetic quantum number). Alternative to the magnetic quantum number, the orbitals are often labeled by the associated harmonic polynomials (e.g., ''xy'', ). Each such orbital can be occupied by a maximum of two electrons, each with its own projection of spin m_s. The simple names s orbital, p orb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Debye
The debye (symbol: D) (; ) is a CGS unit (a non- SI metric unit) of electric dipole momentTwo equal and opposite charges separated by some distance constitute an electric dipole. This dipole possesses an electric dipole moment whose value is given as charge times length of separation, it is a vector whose direction is in the direction of the unit vector of the position vector of the positive charge w.r.t negative charge: :p = ''q''r. named in honour of the physicist Peter J. W. Debye. It is defined as statcoulomb-centimeters.The statcoulomb is also known as the franklin or electrostatic unit of charge. :1 statC = 1 Fr = 1 esu = 1 cm3/2⋅g1/2⋅s−1. Historically the debye was defined as the dipole moment resulting from two charges of opposite sign but an equal magnitude of 10−10 statcoulomb10−10 statcoulomb corresponds to approximately 0.2083 units of elementary charge. (generally called e.s.u. (electrostatic unit) in older scientific ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bond Dipole Moment
In chemistry, polarity is a separation of electric charge leading to a molecule or its chemical groups having an electric dipole moment, with a negatively charged end and a positively charged end. Polar molecules must contain one or more polar bonds due to a difference in electronegativity between the bonded atoms. Molecules containing polar bonds have no molecular polarity if the bond dipoles cancel each other out by symmetry. Polar molecules interact through dipole–dipole intermolecular forces and hydrogen bonds. Polarity underlies a number of physical properties including surface tension, solubility, and melting and boiling points. Polarity of bonds Not all atoms attract electrons with the same force. The amount of "pull" an atom exerts on its electrons is called its electronegativity. Atoms with high electronegativitiessuch as fluorine, oxygen, and nitrogenexert a greater pull on electrons than atoms with lower electronegativities such as alkali metals and alkaline ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrogen Line
The hydrogen line, 21 centimeter line, or H I line is the electromagnetic radiation spectral line that is created by a change in the energy state of neutral hydrogen atoms. This electromagnetic radiation has a precise frequency of , which is equivalent to the vacuum wavelength of in free space. This frequency falls below the microwave region of the electromagnetic spectrum, which begins at 3.0 GHz (10 cm wavelength), and it is observed frequently in radio astronomy because those radio waves can penetrate the large clouds of interstellar cosmic dust that are opaque to visible light. This line is also the theoretical basis of the hydrogen maser. The microwaves of the hydrogen line come from the atomic transition of an electron between the two hyperfine levels of the hydrogen 1 s ground state that have an energy difference of []. It is called the ''spin-flip transition''. The frequency, , of the quantum, quanta that are emitted by this transition between tw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperfine Structure
In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds. In atoms, hyperfine structure arises from the energy of the nuclear magnetic dipole moment interacting with the magnetic field generated by the electrons and the energy of the nuclear electric quadrupole moment in the electric field gradient due to the distribution of charge within the atom. Molecular hyperfine structure is generally dominated by these two effects, but also includes the energy associated with the interaction between the magnetic moments associated with different magnetic nuclei in a molecule, as well as between the nuclear magnetic moments and the magnetic field generated by the rotation of the molecule. Hyperfine structure contrasts with '' fine structure'', which results from the interaction b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inorganic Compound
In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds, that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemistry''. Inorganic compounds comprise most of the Earth's crust, although the compositions of the deep mantle remain active areas of investigation. Some simple carbon compounds are often considered inorganic. Examples include the allotropes of carbon (graphite, diamond, buckminsterfullerene, etc.), carbon monoxide, carbon dioxide, carbides, and the following salts of inorganic anions: carbonates, cyanides, cyanates, and thiocyanates. Many of these are normal parts of mostly organic systems, including organisms; describing a chemical as inorganic does not necessarily mean that it does not occur within living things. History Friedrich Wöhler's conversion of ammonium cyanate into urea in 1828 is often cited as the starting point of modern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]