Characterization Of Probability Distributions
   HOME
*





Characterization Of Probability Distributions
In mathematics in general, a characterization theorem says that a particular object – a function, a space, etc. – is the only one that possesses properties specified in the theorem. A characterization of a probability distribution accordingly states that it is the only probability distribution that satisfies specified conditions. More precisely, the model of characterization of probability distribution was described by in such manner. On the probability space we define the space \mathcal=\ of random variables with values in measurable metric space (U,d_) and the space \mathcal=\ of random variables with values in measurable metric space (V,d_). By characterizations of probability distributions we understand general problems of description of some set \mathcal in the space \mathcal by extracting the sets \mathcal \subseteq \mathcal and \mathcal \subseteq \mathcal which describe the properties of random variables X \in\mathcal and their images Y=\mathbfX \in \mathcal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characterization Theorem
In mathematics, a characterization of an object is a set of conditions that, while different from the definition of the object, is logically equivalent to it. To say that "Property ''P'' characterizes object ''X''" is to say that not only does ''X'' have property (philosophy), property ''P'', but that ''X'' is the ''only'' thing that has property ''P'' (i.e., ''P'' is a defining property of ''X''). Similarly, a set of properties ''P'' is said to characterize ''X'', when these properties distinguish ''X'' from all other objects. Even though a characterization identifies an object in a unique way, several characterizations can exist for a single object. Common mathematical expressions for a characterization of ''X'' in terms of ''P'' include "''P'' is necessary and sufficient for ''X''", and "''X'' holds if and only if ''P''". It is also common to find statements such as "Property ''Q'' characterizes ''Y'' up to isomorphism". The first type of statement says in different words that th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Distribution
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). For instance, if is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of would take the value 0.5 (1 in 2 or 1/2) for , and 0.5 for (assuming that the coin is fair). Examples of random phenomena include the weather conditions at some future date, the height of a randomly selected person, the fraction of male students in a school, the results of a survey to be conducted, etc. Introduction A probability distribution is a mathematical description of the probabilities of events, subsets of the sample space. The sample space, often denoted by \Omega, is the set of all possible outcomes of a random phe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


George Pólya
George Pólya (; hu, Pólya György, ; December 13, 1887 – September 7, 1985) was a Hungarian mathematician. He was a professor of mathematics from 1914 to 1940 at ETH Zürich and from 1940 to 1953 at Stanford University. He made fundamental contributions to combinatorics, number theory, numerical analysis and probability theory. He is also noted for his work in heuristics and mathematics education. He has been described as one of The Martians, an informal category which included one of his most famous students at ETH Zurich, John Von Neumann. Life and works Pólya was born in Budapest, Austria-Hungary, to Anna Deutsch and Jakab Pólya, Hungarian Jews who had converted to Christianity in 1886. Although his parents were religious and he was baptized into the Catholic Church upon birth, George eventually grew up to be an agnostic. He was a professor of mathematics from 1914 to 1940 at ETH Zürich in Switzerland and from 1940 to 1953 at Stanford University. He remained a Pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independence (probability Theory)
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other. When dealing with collections of more than two events, two notions of independence need to be distinguished. The events are called pairwise independent if any two events in the collection are independent of each other, while mutual independence (or collective independence) of events means, informally speaking, that each event is independent of any combination of other events in the collection. A similar notion exists for collections of random variables. Mutual independence implies pairwise independence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identically Distributed
In probability theory and statistics, a collection of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent. This property is usually abbreviated as ''i.i.d.'', ''iid'', or ''IID''. IID was first defined in statistics and finds application in different fields such as data mining and signal processing. Introduction In statistics, we commonly deal with random samples. A random sample can be thought of as a set of objects that are chosen randomly. Or, more formally, it’s “a sequence of independent, identically distributed (IID) random variables”. In other words, the terms ''random sample'' and ''IID'' are basically one and the same. In statistics, we usually say “random sample,” but in probability it’s more common to say “IID.” * Identically Distributed means that there are no overall trends–the distribution doesn’t fluctuate and all items in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the possible upper sides of a flipped coin such as heads H and tails T) in a sample space (e.g., the set \) to a measurable space, often the real numbers (e.g., \ in which 1 corresponding to H and -1 corresponding to T). Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice; it may also represent uncertainty, such as measurement error. However, the interpretation of probability is philosophically complicated, and even in specific cases is not always straightforward. The purely mathematical analysis of random variables is independent of such interpretational difficulties, and can be based upon a rigorous axiomatic setup. In the formal mathematical language of measure theory, a random var ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Variance
In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. Variance has a central role in statistics, where some ideas that use it include descriptive statistics, statistical inference, hypothesis testing, goodness of fit, and Monte Carlo sampling. Variance is an important tool in the sciences, where statistical analysis of data is common. The variance is the square of the standard deviation, the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by \sigma^2, s^2, \operatorname(X), V(X), or \mathbb(X). An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviation; for e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Romanas Januškevičius
Romanas Januškevičius (sometimes transliterated from Russian as Romanas Yanushkevichius; born July 10, 1953) is a Lithuanian mathematician who worked in probability theory and characterization of probability distributions and its stability. He was a professor at the Lithuanian University of Educational Sciences, head of the Department of Mathematics, Informatics and Physics since 2001 until 2017. Early life Januškevičius was born in Vilnius on July 10, 1953. He graduated from one of Vilnius high schools in 1971 and entered Vilnius University, from which he graduated in 1976. In 1976–1978 Januškevičius trained in Steklov Institute of Mathematics in Moscow, where under the guidance of ProfessoVladimir Zolotarevwrote and in 1978 defended his thesis "Investigation of stability in some problems of characterization of distributions" and received the Candidate of Sciences degree. The main result of this thesis was the work of the author, which considered the stability for dec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Memorylessness
In probability and statistics, memorylessness is a property of certain probability distributions. It usually refers to the cases when the distribution of a "waiting time" until a certain event does not depend on how much time has elapsed already. To model memoryless situations accurately, we must constantly 'forget' which state the system is in: the probabilities would not be influenced by the history of the process. Only two kinds of distributions are memoryless: geometric distributions of non-negative integers and the exponential distributions of non-negative real numbers. In the context of Markov processes, memorylessness refers to the Markov property, an even stronger assumption which implies that the properties of random variables related to the future depend only on relevant information about the current time, not on information from further in the past. The present article describes the use outside the Markov property. Waiting time examples With memory Most phenomena are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponential Distribution
In probability theory and statistics, the exponential distribution is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts. The exponential distribution is not the same as the class of exponential families of distributions. This is a large class of probability distributions that includes the exponential distribution as one of its members, but also includes many other distributions, like the normal, binomial, gamma, and Poisson distributions. Definitions Probability density function The probability density function (pdf) of an exponential distribution is : f(x;\lambda) = \begin \lambda ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characterization (mathematics)
In mathematics, a characterization of an object is a set of conditions that, while different from the definition of the object, is logically equivalent to it. To say that "Property ''P'' characterizes object ''X''" is to say that not only does ''X'' have property ''P'', but that ''X'' is the ''only'' thing that has property ''P'' (i.e., ''P'' is a defining property of ''X''). Similarly, a set of properties ''P'' is said to characterize ''X'', when these properties distinguish ''X'' from all other objects. Even though a characterization identifies an object in a unique way, several characterizations can exist for a single object. Common mathematical expressions for a characterization of ''X'' in terms of ''P'' include "''P'' is necessary and sufficient for ''X''", and "''X'' holds if and only if ''P''". It is also common to find statements such as "Property ''Q'' characterizes ''Y'' up to isomorphism". The first type of statement says in different words that the extension of ''P'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characterization Of Probability Distributions
In mathematics in general, a characterization theorem says that a particular object – a function, a space, etc. – is the only one that possesses properties specified in the theorem. A characterization of a probability distribution accordingly states that it is the only probability distribution that satisfies specified conditions. More precisely, the model of characterization of probability distribution was described by in such manner. On the probability space we define the space \mathcal=\ of random variables with values in measurable metric space (U,d_) and the space \mathcal=\ of random variables with values in measurable metric space (V,d_). By characterizations of probability distributions we understand general problems of description of some set \mathcal in the space \mathcal by extracting the sets \mathcal \subseteq \mathcal and \mathcal \subseteq \mathcal which describe the properties of random variables X \in\mathcal and their images Y=\mathbfX \in \mathcal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]