Cg (programming Language)
   HOME
*





Cg (programming Language)
Cg (short for C for Graphics) and High-Level Shader Language (HLSL) are two names given to a high-level shading language developed by Nvidia and Microsoft for computer programming, programming shaders. Cg/HLSL is based on the C (programming language), C programming language and although they share the same core syntax, some features of C were modified and new data types were added to make Cg/HLSL more suitable for programming graphics processing units. Two main branches of the Cg/HLSL language exist: the Nvidia Cg compiler (cgc) which outputs DirectX or OpenGL and the Microsoft HLSL which outputs DirectX shaders in bytecode format. Nvidia's cgc was Deprecation, deprecated in 2012, with no additional development or support available. HLSL shaders can enable many special effects in both 2D and 3D computer graphics. The Cg/HLSL language originally only included support for vertex shaders and pixel shaders, but other types of shaders were introduced gradually as well: * DirectX 10 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distortion
In signal processing, distortion is the alteration of the original shape (or other characteristic) of a signal. In communications and electronics it means the alteration of the waveform of an information-bearing signal, such as an audio signal representing sound or a video signal representing images, in an electronic device or communication channel. Distortion is usually unwanted, and so engineers strive to eliminate or minimize it. In some situations, however, distortion may be desirable. For example, in noise reduction systems like the Dolby system, an audio signal is deliberately distorted in ways that emphasize aspects of the signal that are subject to electrical noise, then it is symmetrically "undistorted" after passing through a noisy communication channel, reducing the noise in the received signal. Distortion is also used as a musical effect, particularly with electric guitars. The addition of noise or other outside signals (hum, interference) is not considered di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deprecation
In several fields, especially computing, deprecation is the discouragement of use of some terminology, feature, design, or practice, typically because it has been superseded or is no longer considered efficient or safe, without completely removing it or prohibiting its use. Typically, deprecated materials are not completely removed to ensure legacy compatibility or back up practice in case new methods are not functional in an odd scenario. It can also imply that a feature, design, or practice will be removed or discontinued entirely in the future. Etymology In general English usage, the infinitive "to deprecate" means "to express disapproval of (something)". It derives from the Latin verb ''deprecari'', meaning "to ward off (a disaster) by prayer". In current technical usage, for one to state that a feature is deprecated is merely a recommendation against using it. It is still possible to produce a program or product without heeding the deprecation. Software While a deprecated so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fixed-point Arithmetic
In computing, fixed-point is a method of representing fractional (non-integer) numbers by storing a fixed number of digits of their fractional part. Dollar amounts, for example, are often stored with exactly two fractional digits, representing the cents (1/100 of dollar). More generally, the term may refer to representing fractional values as integer multiples of some fixed small unit, e.g. a fractional amount of hours as an integer multiple of ten-minute intervals. Fixed-point number representation is often contrasted to the more complicated and computationally demanding floating-point representation. In the fixed-point representation, the fraction is often expressed in the same number base as the integer part, but using negative powers of the base ''b''. The most common variants are decimal (base 10) and binary (base 2). The latter is commonly known also as binary scaling. Thus, if ''n'' fraction digits are stored, the value will always be an integer multiple of ''b' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integer (computer Science)
In computer science, an integer is a datum of integral data type, a data type that represents some range of mathematical integers. Integral data types may be of different sizes and may or may not be allowed to contain negative values. Integers are commonly represented in a computer as a group of binary digits (bits). The size of the grouping varies so the set of integer sizes available varies between different types of computers. Computer hardware nearly always provides a way to represent a processor register or memory address as an integer. Value and representation The ''value'' of an item with an integral type is the mathematical integer that it corresponds to. Integral types may be ''unsigned'' (capable of representing only non-negative integers) or ''signed'' (capable of representing negative integers as well). An integer value is typically specified in the source code of a program as a sequence of digits optionally prefixed with + or −. Some programming languages allow oth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Half-precision Floating-point Format
In computing, half precision (sometimes called FP16) is a binary (computing), binary floating-point computer number format that occupies 16 bits (two bytes in modern computers) in computer memory. It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks. Almost all modern uses follow the IEEE 754-2008 standard, where the 16-bit radix, base-2 format is referred to as binary16, and the exponent uses 5 bits. This can express values in the range ±65,504, with the minimum value above 1 being 1 + 1/1024. Depending on the computer, half-precision can be over an order of magnitude faster than double precision, e.g. 550 PFLOPS for half-precision vs 37 PFLOPS for double precision on one cloud provider. History Several earlier 16-bit floating point formats have existed including that of Hitachi's HD61810 DSP of 1982, Scott's WIF and the 3dfx Interactive, 3dfx Voodoo Graphics proc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

IEEE Floating Point
The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and portably. Many hardware floating-point units use the IEEE 754 standard. The standard defines: * ''arithmetic formats:'' sets of binary and decimal floating-point data, which consist of finite numbers (including signed zeros and subnormal numbers), infinities, and special "not a number" values (NaNs) * ''interchange formats:'' encodings (bit strings) that may be used to exchange floating-point data in an efficient and compact form * ''rounding rules:'' properties to be satisfied when rounding numbers during arithmetic and conversions * ''operations:'' arithmetic and other operations (such as trigonometric functions) on arithmetic formats * ''exception ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ray Tracing (graphics)
In 3D computer graphics, ray tracing is a technique for modeling light transport for use in a wide variety of rendering algorithms for generating digital images. On a spectrum of computational cost and visual fidelity, ray tracing-based rendering techniques, such as ray casting, recursive ray tracing, distribution ray tracing, photon mapping and path tracing, are generally slower and higher fidelity than scanline rendering methods. Thus, ray tracing was first deployed in applications where taking a relatively long time to render could be tolerated, such as in still computer-generated images, and film and television visual effects (VFX), but was less suited to real-time applications such as video games, where speed is critical in rendering each frame. Since 2018, however, hardware acceleration for real-time ray tracing has become standard on new commercial graphics cards, and graphics APIs have followed suit, allowing developers to use hybrid ray tracing and rasterization- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tessellation Shader
In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene - a process known as ''shading''. Shaders have evolved to perform a variety of specialized functions in computer graphics special effects and video post-processing, as well as general-purpose computing on graphics processing units. Traditional shaders calculate rendering effects on graphics hardware with a high degree of flexibility. Most shaders are coded for (and run on) a graphics processing unit (GPU), though this is not a strict requirement. ''Shading languages'' are used to program the GPU's rendering pipeline, which has mostly superseded the fixed-function pipeline of the past that only allowed for common geometry transforming and pixel-shading functions; with shaders, customized effects can be used. The position and color (hue, saturation, brightness, and contrast) of all pixels, vertices, and/or textures use ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GPGPU
General-purpose computing on graphics processing units (GPGPU, or less often GPGP) is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU). The use of multiple video cards in one computer, or large numbers of graphics chips, further parallelizes the already parallel nature of graphics processing. Essentially, a GPGPU pipeline is a kind of parallel processing between one or more GPUs and CPUs that analyzes data as if it were in image or other graphic form. While GPUs operate at lower frequencies, they typically have many times the number of cores. Thus, GPUs can process far more pictures and graphical data per second than a traditional CPU. Migrating data into graphical form and then using the GPU to scan and analyze it can create a large speedup. GPGPU pipelines were developed at the beginning of the 21st century for graphic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compute Shader
In computing, a compute kernel is a routine compiled for high throughput accelerators (such as graphics processing units (GPUs), digital signal processors (DSPs) or field-programmable gate arrays (FPGAs)), separate from but used by a main program (typically running on a central processing unit). They are sometimes called compute shaders, sharing execution units with vertex shaders and pixel shaders on GPUs, but are not limited to execution on one class of device, or graphics APIs. Description Compute kernels roughly correspond to inner loops when implementing algorithms in traditional languages (except there is no implied sequential operation), or to code passed to internal iterators. They may be specified by a separate programming language such as "OpenCL C" (managed by the OpenCL API), as "compute shaders" written in a shading language (managed by a graphics API such as OpenGL), or embedded directly in application code written in a high level language, as in the case of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry Shader
In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene - a process known as ''shading''. Shaders have evolved to perform a variety of specialized functions in computer graphics special effects and video post-processing, as well as general-purpose computing on graphics processing units. Traditional shaders calculate rendering effects on graphics hardware with a high degree of flexibility. Most shaders are coded for (and run on) a graphics processing unit (GPU), though this is not a strict requirement. ''Shading languages'' are used to program the GPU's rendering pipeline, which has mostly superseded the fixed-function pipeline of the past that only allowed for common geometry transforming and pixel-shading functions; with shaders, customized effects can be used. The position and color (hue, saturation, brightness, and contrast) of all pixels, vertices, and/or textures use ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pixel Shader
In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene - a process known as ''shading''. Shaders have evolved to perform a variety of specialized functions in computer graphics special effects and video post-processing, as well as general-purpose computing on graphics processing units. Traditional shaders calculate rendering effects on graphics hardware with a high degree of flexibility. Most shaders are coded for (and run on) a graphics processing unit (GPU), though this is not a strict requirement. ''Shading languages'' are used to program the GPU's rendering pipeline, which has mostly superseded the fixed-function pipeline of the past that only allowed for common geometry transforming and pixel-shading functions; with shaders, customized effects can be used. The position and color (hue, saturation, brightness, and contrast) of all pixels, vertices, and/or textures us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]