Cellular Approximation Theorem
   HOME
*





Cellular Approximation Theorem
In algebraic topology, the cellular approximation theorem states that a map between CW-complexes can always be taken to be of a specific type. Concretely, if ''X'' and ''Y'' are CW-complexes, and ''f'' : ''X'' → ''Y'' is a continuous map, then ''f'' is said to be ''cellular'', if ''f'' takes the ''n''-skeleton of ''X'' to the ''n''-skeleton of ''Y'' for all ''n'', i.e. if f(X^n)\subseteq Y^n for all ''n''. The content of the cellular approximation theorem is then that any continuous map ''f'' : ''X'' → ''Y'' between CW-complexes ''X'' and ''Y'' is homotopic to a cellular map, and if ''f'' is already cellular on a subcomplex ''A'' of ''X'', then we can furthermore choose the homotopy to be stationary on ''A''. From an algebraic topological viewpoint, any map between CW-complexes can thus be taken to be cellular. Idea of proof The proof can be given by induction after ''n'', with the statement that ''f'' is cellular on the skeleton ''X''''n''. For the base case n=0, notice tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function (mathematics)
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians Al-Biruni and Sharaf al-Din al-Tusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CW Complex
A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead (open access) to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation (often with a much smaller complex). The ''C'' stands for "closure-finite", and the ''W'' for "weak" topology. Definition CW complex A CW complex is constructed by taking the union of a sequence of topological spaces\emptyset = X_ \subset X_0 \subset X_1 \subset \cdotssuch that each X_k is obtained from X_ by gluing copies of k-cells (e^k_\alpha)_\alpha, each homeomorphic to D^k, to X_ by continuous gluing maps g^k_\alpha: \partial e^k_\alpha \to X_. The maps are also called attaching maps. Each X_k is called the k-skeleton of the complex. The topology of X = \cup_ X_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Equivalence (homotopy Theory)
In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category. A model category is a category with classes of morphisms called weak equivalences, fibrations, and cofibrations, satisfying several axioms. The associated homotopy category of a model category has the same objects, but the morphisms are changed in order to make the weak equivalences into isomorphisms. It is a useful observation that the associated homotopy category depends only on the weak equivalences, not on the fibrations and cofibrations. Topological spaces Model categories were defined by Quillen as an axiomatization of homotopy theory that applies to topological spaces, but also to many other categories in algebra and geometry. The example that started the subject is the category of topological spaces with Serre fibrations as fibrations and weak homotopy equivalences as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

N-connected
In algebraic topology, homotopical connectivity is a property describing a topological space based on the dimension of its holes. In general, low homotopical connectivity indicates that the space has at least one low-dimensional hole. The concept of ''n''-connectedness generalizes the concepts of path-connectedness and simple connectedness. An equivalent definition of homotopical connectivity is based on the homotopy groups of the space. A space is ''n''-connected (or ''n''-simple connected) if its first ''n'' homotopy groups are trivial. Homotopical connectivity is defined for maps, too. A map is ''n''-connected if it is an isomorphism "up to dimension ''n,'' in homotopy". Definition using holes All definitions below consider a topological space ''X''. A hole in ''X'' is, informally, a thing that prevents some suitably-placed sphere from continuously shrinking to a point., Section 4.3 Equivalently, it is a sphere that cannot be continuously extended to a ball. Formally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CW-pair
A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead (open access) to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation (often with a much smaller complex). The ''C'' stands for "closure-finite", and the ''W'' for "weak" topology. Definition CW complex A CW complex is constructed by taking the union of a sequence of topological spaces\emptyset = X_ \subset X_0 \subset X_1 \subset \cdotssuch that each X_k is obtained from X_ by gluing copies of k-cells (e^k_\alpha)_\alpha, each homeomorphic to D^k, to X_ by continuous gluing maps g^k_\alpha: \partial e^k_\alpha \to X_. The maps are also called attaching maps. Each X_k is called the k-skeleton of the complex. The topology of X = \cup_ X_k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Base-point
In mathematics, a pointed set (also based set or rooted set) is an ordered pair (X, x_0) where X is a set and x_0 is an element of X called the base point, also spelled basepoint. Maps between pointed sets (X, x_0) and (Y, y_0) – called based maps, pointed maps, or point-preserving maps – are functions from X to Y that map one basepoint to another, i.e. a map f \colon X \to Y such that f(x_0) = y_0. This is usually denoted : f \colon (X, x_0) \to (Y, y_0). Pointed sets are very simple algebraic structures. In the sense of universal algebra, a pointed set is a set X together with a single nullary operation *: X^0 \to X, which picks out the basepoint. Pointed maps are the homomorphisms of these algebraic structures. The class of all pointed sets together with the class of all based maps form a category. In this category the pointed singleton sets (\, a) are initial objects and terminal objects,Mac Lane (1998) p.26 i.e. they are zero objects. There is a faithful functor from p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Canonical Form
In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and which allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a ''unique'' representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness. The canonical form of a positive integer in decimal representation is a finite sequence of digits that does not begin with zero. More generally, for a class of objects on which an equivalence relation is defined, a canonical form consists in the choice of a specific object in each class. For example: *Jordan normal form is a canonical form for matrix similarity. *The row echelon form is a canonical form, when one considers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or ''holes'', of a topological space. To define the ''n''-th homotopy group, the base-point-preserving maps from an ''n''-dimensional sphere (with base point) into a given space (with base point) are collected into equivalence classes, called homotopy classes. Two mappings are homotopic if one can be continuously deformed into the other. These homotopy classes form a group, called the ''n''-th homotopy group, \pi_n(X), of the given space ''X'' with base point. Topological spaces with differing homotopy groups are never equivalent ( homeomorphic), but topological spaces that homeomorphic have the same homotopy groups. The notion of homotopy of paths was introduced by Camille Jordan. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy Extension Property
In mathematics, in the area of algebraic topology, the homotopy extension property indicates which homotopies defined on a subspace can be extended to a homotopy defined on a larger space. The homotopy extension property of cofibrations is dual to the homotopy lifting property that is used to define fibrations. Definition Let X\,\! be a topological space, and let A \subset X. We say that the pair (X,A)\,\! has the homotopy extension property if, given a homotopy f_t\colon A \rightarrow Y and a map \tilde_0\colon X \rightarrow Y such that \left.\tilde_0\_A = f_0, there exists an ''extension'' of f_t to a homotopy \tilde_t\colon X \rightarrow Y such that \left.\tilde_t\_A = f_t.A. Dold, ''Lectures on Algebraic Topology'', pp. 84, Springer That is, the pair (X,A)\,\! has the homotopy extension property if any map G\colon ((X\times \) \cup (A\times I)) \rightarrow Y can be extended to a map G'\colon X\times I \rightarrow Y (i.e. G\,\! and G'\,\! agree on their common domain). If t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deformation Retraction
In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of ''continuously shrinking'' a space into a subspace. An absolute neighborhood retract (ANR) is a particularly well-behaved type of topological space. For example, every topological manifold is an ANR. Every ANR has the homotopy type of a very simple topological space, a CW complex. Definitions Retract Let ''X'' be a topological space and ''A'' a subspace of ''X''. Then a continuous map :r\colon X \to A is a retraction if the restriction of ''r'' to ''A'' is the identity map on ''A''; that is, r(a) = a for all ''a'' in ''A''. Equivalently, denoting by :\iota\colon A \hookrightarrow X the inclusion, a retraction is a continuous map ''r'' such that :r \circ \iota = \operatorname_A, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-trivial
In mathematics, the adjective trivial is often used to refer to a claim or a case which can be readily obtained from context, or an object which possesses a simple structure (e.g., groups, topological spaces). The noun triviality usually refers to a simple technical aspect of some proof or definition. The origin of the term in mathematical language comes from the medieval trivium curriculum, which distinguishes from the more difficult quadrivium curriculum. The opposite of trivial is nontrivial, which is commonly used to indicate that an example or a solution is not simple, or that a statement or a theorem is not easy to prove. The judgement of whether a situation under consideration is trivial or not depends on who considers it since the situation is obviously true for someone who has sufficient knowledge or experience of it while to someone who has never seen this, it may be even hard to be understood so not trivial at all. And there can be an argument about how quickly and easily ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]