Catalan Surface
   HOME
*





Catalan Surface
In geometry, a Catalan surface, named after the Belgian mathematician Eugène Charles Catalan, is a ruled surface all of whose rulings are parallel to a fixed plane. Equations The vector equation of a Catalan surface is given by :''r'' = ''s''(''u'') + ''v'' ''L''(''u''), where ''r'' = ''s''(''u'') is the space curve and ''L''(''u'') is the unit vector of the ruling at ''u'' = ''u''. All the vectors ''L''(''u'') are parallel to the same plane, called the '' directrix plane'' of the surface. This can be characterized by the condition: the mixed product 'L''(''u''), ''L' ''(''u''), ''L" ''(''u'')= The parametric equations of the Catalan surface ar x=f(u)+vi(u),\quad y=g(u)+vj(u),\quad z=h(u)+vk(u) \, Special cases If all the rulings of a Catalan surface intersect a fixed Line (geometry), line, then the surface is called a conoid. Catalan proved that the helicoid and the plane were the only ruled minimal surfaces. See also * Generalized helicoid In geometry, a generali ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Catalan Surface
In geometry, a Catalan surface, named after the Belgian mathematician Eugène Charles Catalan, is a ruled surface all of whose rulings are parallel to a fixed plane. Equations The vector equation of a Catalan surface is given by :''r'' = ''s''(''u'') + ''v'' ''L''(''u''), where ''r'' = ''s''(''u'') is the space curve and ''L''(''u'') is the unit vector of the ruling at ''u'' = ''u''. All the vectors ''L''(''u'') are parallel to the same plane, called the '' directrix plane'' of the surface. This can be characterized by the condition: the mixed product 'L''(''u''), ''L' ''(''u''), ''L" ''(''u'')= The parametric equations of the Catalan surface ar x=f(u)+vi(u),\quad y=g(u)+vj(u),\quad z=h(u)+vk(u) \, Special cases If all the rulings of a Catalan surface intersect a fixed Line (geometry), line, then the surface is called a conoid. Catalan proved that the helicoid and the plane were the only ruled minimal surfaces. See also * Generalized helicoid In geometry, a generali ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parametric Equations
Parametric may refer to: Mathematics *Parametric equation, a representation of a curve through equations, as functions of a variable *Parametric statistics, a branch of statistics that assumes data has come from a type of probability distribution *Parametric derivative, a type of derivative in calculus *Parametric model, a family of distributions that can be described using a finite number of parameters * Parametric oscillator, a harmonic oscillator whose parameters oscillate in time *Parametric surface, a particular type of surface in the Euclidean space R3 *Parametric family, a family of objects whose definitions depend on a set of parameters Science * Parametric process, in optical physics, any process in which an interaction between light and matter does not change the state of the material * Spontaneous parametric down-conversion, in quantum optics, a source of entangled photon pairs and of single photons *Optical parametric amplifier, a type of laser light source that e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generalized Helicoid
In geometry, a generalized helicoid is a surface in Euclidean space generated by rotating and simultaneously displacing a curve, the ''profile curve'', along a line, its ''axis''. Any point of the given curve is the starting point of a circular helix. If the profile curve is contained in a plane through the axis, it is called the meridian of the generalized helicoid. Simple examples of generalized helicoids are the helicoids. The meridian of a helicoid is a line which intersects the axis orthogonally. Essential types of generalized helicoids are * ruled generalized helicoids. Their profile curves are lines and the surfaces are ruled surfaces. *circular generalized helicoids. Their profile curves are circles. In mathematics helicoids play an essential role as minimal surfaces. In the technical area generalized helicoids are used for staircases, slides, screws, and pipes. Analytical representation Screw motion of a point Moving a point on a screwtype curve means, the point i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minimal Surfaces
In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below). The term "minimal surface" is used because these surfaces originally arose as surfaces that minimized total surface area subject to some constraint. Physical models of area-minimizing minimal surfaces can be made by dipping a wire frame into a soap solution, forming a soap film, which is a minimal surface whose boundary is the wire frame. However, the term is used for more general surfaces that may self-intersect or do not have constraints. For a given constraint there may also exist several minimal surfaces with different areas (for example, see minimal surface of revolution): the standard definitions only relate to a local optimum, not a global optimum. Definitions Minimal surfaces can be defined in several equivalent ways in R3. The fact that they are equivalent serves to demonstrate how minimal surface theory lies at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ruled Surface
In geometry, a surface is ruled (also called a scroll) if through every point of there is a straight line that lies on . Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directrix, the right conoid, the helicoid, and the tangent developable of a smooth curve in space. A ruled surface can be described as the set of points swept by a moving straight line. For example, a cone is formed by keeping one point of a line fixed whilst moving another point along a circle. A surface is ''doubly ruled'' if through every one of its points there are two distinct lines that lie on the surface. The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces. The plane is the only surface which contains at least three distinct lines through each of its points . The properties of being ruled or doubly ruled are preserved by projective maps, and therefore are concepts of projective geometry. In algebraic geom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Helicoid
The helicoid, also known as helical surface, after the plane and the catenoid, is the third minimal surface to be known. Description It was described by Euler in 1774 and by Jean Baptiste Meusnier in 1776. Its name derives from its similarity to the helix: for every point on the helicoid, there is a helix contained in the helicoid which passes through that point. Since it is considered that the planar range extends through negative and positive infinity, close observation shows the appearance of two parallel or mirror planes in the sense that if the slope of one plane is traced, the co-plane can be seen to be bypassed or skipped, though in actuality the co-plane is also traced from the opposite perspective. The helicoid is also a ruled surface (and a right conoid), meaning that it is a trace of a line. Alternatively, for any point on the surface, there is a line on the surface passing through it. Indeed, Catalan proved in 1842 that the helicoid and the plane were the only ru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conoid
In geometry a conoid () is a ruled surface, whose rulings (lines) fulfill the additional conditions: :(1) All rulings are parallel to a plane, the '' directrix plane''. :(2) All rulings intersect a fixed line, the ''axis''. The conoid is a right conoid if its axis is perpendicular to its directrix plane. Hence all rulings are perpendicular to the axis. Because of (1) any conoid is a Catalan surface and can be represented parametrically by :\mathbf x(u,v)= \mathbf c(u) + v\mathbf r(u)\ Any curve with fixed parameter is a ruling, describes the ''directrix'' and the vectors are all parallel to the directrix plane. The planarity of the vectors can be represented by :\det(\mathbf r,\mathbf \dot r,\mathbf \ddot r)=0 . If the directrix is a circle, the conoid is called a circular conoid. The term ''conoid'' was already used by Archimedes in his treatise '' On Conoids and Spheroides''. Examples Right circular conoid The parametric representation : \mathbf x(u,v)=(\cos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Line (geometry)
In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segment in everyday life, which has two points to denote its ends. Lines can be referred by two points that lay on it (e.g., \overleftrightarrow) or by a single letter (e.g., \ell). Euclid described a line as "breadthless length" which "lies evenly with respect to the points on itself"; he introduced several postulates as basic unprovable properties from which he constructed all of geometry, which is now called Euclidean geometry to avoid confusion with other geometries which have been introduced since the end of the 19th century (such as non-Euclidean, projective and affine geometry). In modern mathematics, given the multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in analy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scalar Triple Product
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors. The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product. Scalar triple product The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two. Geometric interpretation Geometrically, the scalar triple product : \mathbf\cdot(\mathbf\times \mathbf) is the (signed) volume of the parallelepiped defined by the three vectors given. Here, the parentheses may be omitted without causing ambiguity, since the dot product cannot be evaluated first. If it were, it would leave the cross product of a scalar and a vector, which is not defined. Properties * The scalar triple product is unchanged under a circular shift of its three operands (a, b, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Directrix (rational Normal Scroll)
In mathematics, a rational normal scroll is a ruled surface of degree ''n'' in projective space of dimension ''n'' + 1. Here "rational" means birational to projective space, "scroll" is an old term for ruled surface, and "normal" refers to projective normality (not normal schemes). A non-degenerate irreducible surface of degree ''m'' – 1 in P''m'' is either a rational normal scroll or the Veronese surface. Construction In projective space of dimension ''m'' + ''n'' + 1 choose two complementary linear subspaces of dimensions ''m'' > 0 and ''n'' > 0. Choose rational normal curves in these two linear subspaces, and choose an isomorphism φ between them. Then the rational normal surface consists of all lines joining the points ''x'' and ''φ''(''x''). In the degenerate case when one of ''m'' or ''n'' is 0, the rational normal scroll becomes a cone over a rational normal curve. If ''m'' < ''n'' then the ratio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unit Vector
In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in \hat (pronounced "v-hat"). The term ''direction vector'', commonly denoted as d, is used to describe a unit vector being used to represent spatial direction and relative direction. 2D spatial directions are numerically equivalent to points on the unit circle and spatial directions in 3D are equivalent to a point on the unit sphere. The normalized vector û of a non-zero vector u is the unit vector in the direction of u, i.e., :\mathbf = \frac where , u, is the norm (or length) of u. The term ''normalized vector'' is sometimes used as a synonym for ''unit vector''. Unit vectors are often chosen to form the basis of a vector space, and every vector in the space may be written as a linear combination of unit vectors. Orthogonal coordinates Cartesian coordinates Unit vectors ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]