HOME
*



picture info

Casimir Effect
In quantum field theory, the Casimir effect is a physical force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of the field. It is named after the Dutch physicist Hendrik Casimir, who predicted the effect for electromagnetic systems in 1948. In the same year, Casimir together with Dirk Polder described a similar effect experienced by a neutral atom in the vicinity of a macroscopic interface which is referred to as the Casimir–Polder force. Their result is a generalization of the London–van der Waals force and includes retardation due to the finite speed of light. Since the fundamental principles leading to the London–van der Waals force, the Casimir and the Casimir–Polder force, respectively, can be formulated on the same footing, the distinction in nomenclature nowadays serves a historical purpose mostly and usually refers to the different physical setups. It was not until 1997 that a direct experiment by S. La ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Casimir Plates
In quantum field theory, the Casimir effect is a physical force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of the field. It is named after the Dutch physicist Hendrik Casimir, who predicted the effect for electromagnetic systems in 1948. In the same year, Casimir together with Dirk Polder described a similar effect experienced by a neutral atom in the vicinity of a macroscopic interface which is referred to as the Casimir–Polder force. Their result is a generalization of the London–van der Waals force and includes retardation due to the finite speed of light. Since the fundamental principles leading to the London–van der Waals force, the Casimir and the Casimir–Polder force, respectively, can be formulated on the same footing, the distinction in nomenclature nowadays serves a historical purpose mostly and usually refers to the different physical setups. It was not until 1997 that a direct experiment by S. Lamore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physics Letters A
''Physics Letters'' was a scientific journal published from 1962 to 1966, when it split in two series now published by Elsevier: *''Physics Letters A'': condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. *''Physics Letters B'': nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics. ''Physics Letters B'' is part of the SCOAP3 initiative. References See also * List of periodicals published by Elsevier This is a list of scientific, technical and general interest periodicals published by Elsevier or one of its imprints or subsidiary companies. Both printed items and electronic publications are included in this list. A B C D E F G ... ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Review Focus
''Physical Review Focus'' was an internet service of the American Physical Society that began in 1998, aiming to explain new developments in physics in a language understandable to the educated non-physicist. One or two short articles were published weekly. In 2011, it merged with the magazine ''Physics'' (physics.aps.org) and became the Focus section of that publication. The Focus section of Physics continues to produce the same style of articles that were previously published in Physical Review Focus. The content is available without payment. The name came from the service's connection to the ''Physical Review'', a suite of scientific journal In academic publishing, a scientific journal is a periodical publication intended to further the progress of science, usually by reporting new research. Content Articles in scientific journals are mostly written by active scientists such ...s published by the American Physical Society. External links "Physics"(includes Focus sec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Virtual Particle
A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle. The concept of virtual particles arises in the perturbation theory of quantum field theory where interactions between ordinary particles are described in terms of exchanges of virtual particles. A process involving virtual particles can be described by a schematic representation known as a Feynman diagram, in which virtual particles are represented by internal lines. Virtual particles do not necessarily carry the same mass as the corresponding real particle, although they always conserve energy and momentum. The closer its characteristics come to those of ordinary particles, the longer the virtual particle exists. They are important in the physics of many processes, including particle scattering and Casimir forces. In quantum field theory, forces—such as the electromagnetic repulsion o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Annales De La Fondation Louis De Broglie
The Fondation Louis-de-Broglie is a French foundation for research into physics. The foundation is located at the French Academy of Sciences in Paris. Overview The Fondation Louis-de-Broglie was created at the Conservatoire national des arts et métiers in 1973 by Louis de Broglie on the occasion of the fiftieth anniversary of the discovery of matter waves. Louis de Broglie bequeathed the foundation property acquired thanks to his Nobel prize in physics. The foundation receives a grant from the Fondation de France. ''Annales de la Fondation Louis de Broglie'' Since 1975 the foundation has published the peer-reviewed, open access, scientific journal ''Annales de la Fondation Louis de Broglie''. Much of the published work centers on the De Broglie–Bohm theory or pilot wave theory of quantum mechanics. The annals is or has been indexed and abstracted in the following bibliographic databases: * INSPEC *Naver * Norwegian Register for Scientific Journals, Series and Publishe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Classical Electromagnetism
Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model; It is, therefore, a classical field theory. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics, which is a quantum field theory. Fundamental physical aspects of classical electrodynamics are presented in many texts, such as those by Feynman, Leighton and Sands, Griffiths, Panofsky and Phillips, and Jackson. History The physical phenomena that electromagnetism describes have been studied as separate fields since antiquity. For example, there were many advances in the field of optics centuries before light was understood to b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vacuum
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often discuss ideal test results that would occur in a ''perfect'' vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is considerably lower than atmospheric pressure. The Latin term ''in vacuo'' is used to describe an object that is surrounded by a vacuum. The ''quality'' of a partial vacuum refers to how closely it approaches a perfect vacuum. Other things equal, lower gas pressure means higher-quality vacuum. For example, a typical vacuum cleaner produces enough suction to reduce air pressure by around 20%. But h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electric Charge
Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respectively). Like charges repel each other and unlike charges attract each other. An object with an absence of net charge is referred to as neutral. Early knowledge of how charged substances interact is now called classical electrodynamics, and is still accurate for problems that do not require consideration of quantum effects. Electric charge is a conserved property; the net charge of an isolated system, the amount of positive charge minus the amount of negative charge, cannot change. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms. If there are more electrons than protons in a piece of matter, it will h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nanotechnologies
Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defined nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter which occur below the given size threshold. It is therefore common ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Microtechnologies
Microtechnology deals with technology whose features have dimensions of the order of one micrometre (one millionth of a metre, or 10−6 metre, or 1μm). It focuses on physical and chemical processes as well as the production or manipulation of structures with one-micrometre magnitude. Development Around 1970, scientists learned that by arraying large numbers of microscopic transistors on a single chip, microelectronic circuits could be built that dramatically improved performance, functionality, and reliability, all while reducing cost and increasing volume. This development led to the Information Revolution. More recently, scientists have learned that not only electrical devices, but also mechanical devices, may be miniaturized and batch-fabricated, promising the same benefits to the mechanical world as integrated circuit technology has given to the electrical world. While electronics now provide the ‘brains’ for today's advanced systems and products, micro-mechanical devi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Applied Physics
Applied physics is the application of physics to solve scientific or engineering problems. It is usually considered to be a bridge or a connection between physics and engineering. "Applied" is distinguished from "pure" by a subtle combination of factors, such as the motivation and attitude of researchers and the nature of the relationship to the technology or science that may be affected by the work. Applied physics is rooted in the fundamental truths and basic concepts of the physical sciences, but is concerned with the utilization of scientific principles in practical devices and systems, and in the application of physics in other areas of science and high technology. Examples of research and development areas *Accelerator physics * Acoustics *Atmospheric physics *Biophysics * Brain–computer interfacing *Chemical physics *Differentiable programming **Artificial intelligence ** Scientific computing *Engineering physics **Chemical engineering ** Electrical engineering ***E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]