Calabi–Yau Manifold
   HOME
*



picture info

Calabi–Yau Manifold
In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring theory, the extra dimensions of spacetime are sometimes conjectured to take the form of a 6-dimensional Calabi–Yau manifold, which led to the idea of mirror symmetry. Their name was coined by , after who first conjectured that such surfaces might exist, and who proved the Calabi conjecture. Calabi–Yau manifolds are complex manifolds that are generalizations of K3 surfaces in any number of complex dimensions (i.e. any even number of real dimensions). They were originally defined as compact Kähler manifolds with a vanishing first Chern class and a Ricci-flat metric, though many other similar but inequivalent definitions are sometimes used. Definitions The motivational definition given by Shing-Tung Yau is of a compact Kähl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ricci-flat Manifold
In the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in vacuum with vanishing cosmological constant. In Lorentzian geometry, a number of Ricci-flat metrics are known from works of Karl Schwarzschild, Roy Kerr, and Yvonne Choquet-Bruhat. In Riemannian geometry, Shing-Tung Yau's resolution of the Calabi conjecture produced a number of Ricci-flat metrics on Kähler manifolds. Definition A pseudo-Riemannian manifold is said to be Ricci-flat if its Ricci curvature is zero. It is direct to verify that, except in dimension two, a metric is Ricci-flat if and only if its Einstein tensor is zero. Ricci-flat manifolds are one of three special type of Einstein manifold, arising as the special case of scalar curvature equa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be irreducible, which means that it is not the union of two smaller sets that are closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a monic polynomial (an algebraic object) in one variable with complex number coefficients is determined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gorenstein Scheme
In algebraic geometry, a Gorenstein scheme is a locally Noetherian scheme whose local rings are all Gorenstein. The canonical line bundle is defined for any Gorenstein scheme over a field, and its properties are much the same as in the special case of smooth schemes. Related properties For a Gorenstein scheme ''X'' of finite type over a field, ''f'': ''X'' → Spec(''k''), the dualizing complex ''f''!(''k'') on ''X'' is a line bundle (called the canonical bundle ''K''''X''), viewed as a complex in degree −dim(''X''). If ''X'' is smooth of dimension ''n'' over ''k'', the canonical bundle ''K''''X'' can be identified with the line bundle Ω''n'' of top-degree differential forms. Using the canonical bundle, Serre duality takes the same form for Gorenstein schemes as it does for smooth schemes. Let ''X'' be a normal scheme of finite type over a field ''k''. Then ''X'' is regular outside a closed subset of codimension at least 2. Let ''U'' be the open subset where ''X'' is regula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hodge Number
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold ''M'' using partial differential equations. The key observation is that, given a Riemannian metric on ''M'', every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic. The theory was developed by Hodge in the 1930s to study algebraic geometry, and it built on the work of Georges de Rham on de Rham cohomology. It has major applications in two settings: Riemannian manifolds and Kähler manifolds. Hodge's primary motivation, the study of complex projective varieties, is encompassed by the latter case. Hodge theory has become an important tool in algebraic geometry, particularly through its connection to the study of algebraic cycles. While Hodge theory is intrinsically dependent upon the real and complex numbers, it can be applied to questions in nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Group
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups. The fundamental group of a topological space X is denoted by \pi_1(X). Intuition Start with a space (for example, a surface), and some point in it, and all the loops both starting and ending at this point— paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined in an obvious way: travel along the first loop, then along the second. Two loops are considered equivalent if one can be deformed into the other without breakin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gang Tian
Tian Gang (; born November 24, 1958) is a Chinese mathematician. He is a professor of mathematics at Peking University and Higgins Professor Emeritus at Princeton University. He is known for contributions to the mathematical fields of Kähler geometry, Gromov-Witten theory, and geometric analysis. As of 2020, he is the Vice Chairman of the China Democratic League and the President of the Chinese Mathematical Society. From 2017 to 2019 he served as the Vice President of Peking University. Biography Tian was born in Nanjing, Jiangsu, China. He qualified in the second college entrance exam after Cultural Revolution in 1978. He graduated from Nanjing University in 1982, and received a master's degree from Peking University in 1984. In 1988, he received a Ph.D. in mathematics from Harvard University, under the supervision of Shing-Tung Yau. In 1998, he was appointed as a Cheung Kong Scholar professor at Peking University. Later his appointment was changed to Cheung Kong Schol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Enriques Surface
In mathematics, Enriques surfaces are algebraic surfaces such that the irregularity ''q'' = 0 and the canonical line bundle ''K'' is non-trivial but has trivial square. Enriques surfaces are all projective (and therefore Kähler over the complex numbers) and are elliptic surfaces of genus 0. Over fields of characteristic not 2 they are quotients of K3 surfaces by a group of order 2 acting without fixed points and their theory is similar to that of algebraic K3 surfaces. Enriques surfaces were first studied in detail by as an answer to a question discussed by about whether a surface with ''q'' = ''p''''g'' = 0 is necessarily rational, though some of the Reye congruences introduced earlier by are also examples of Enriques surfaces. Enriques surfaces can also be defined over other fields. Over fields of characteristic other than 2, showed that the theory is similar to that over the complex numbers. Over fields of characteristic 2 the definition is modified, and there are two new ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simply Connected Space
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed (intuitively for embedded spaces, staying within the space) into any other such path while preserving the two endpoints in question. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial. Definition and equivalent formulations A topological space X is called if it is path-connected and any loop in X defined by f : S^1 \to X can be contracted to a point: there exists a continuous map F : D^2 \to X such that F restricted to S^1 is f. Here, S^1 and D^2 denotes the unit circle and closed unit disk in the Euclidean plane respectively. An equivalent formulation is this: X is simply connected if and only if it is path-connected, and whene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperelliptic Surface
In mathematics, a hyperelliptic surface, or bi-elliptic surface, is a surface whose Albanese morphism is an elliptic fibration. Any such surface can be written as the quotient of a product of two elliptic curves by a finite abelian group. Hyperelliptic surfaces form one of the classes of surfaces of Kodaira dimension 0 in the Enriques–Kodaira classification. Invariants The Kodaira dimension is 0. Hodge diamond: Classification Any hyperelliptic surface is a quotient (''E''×''F'')/''G'', where ''E'' = C/Λ and ''F'' are elliptic curves, and ''G'' is a subgroup of ''F'' ( acting on ''F'' by translations). There are seven families of hyperelliptic surfaces as in the following table. Here ω is a primitive cube root of 1 and i is a primitive 4th root of 1. Quasi hyperelliptic surfaces A quasi-hyperelliptic surface is a surface whose canonical divisor is numerically equivalent to zero, the Albanese mapping maps to an elliptic curve, and all its fibers are rational with a cus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SU(n)
In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case. The group operation is matrix multiplication. The special unitary group is a normal subgroup of the unitary group , consisting of all unitary matrices. As a compact classical group, is the group that preserves the standard inner product on \mathbb^n. It is itself a subgroup of the general linear group, \operatorname(n) \subset \operatorname(n) \subset \operatorname(n, \mathbb ). The groups find wide application in the Standard Model of particle physics, especially in the electroweak interaction and in quantum chromodynamics. The groups are important in quantum computing, as they represent the possible quantum logic gate operations in a quantum circuit with n qubits and thus 2^n basis states. (Alternatively, the more ge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holonomy
In differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ..., the holonomy of a connection (mathematics), connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features. Any kind of connection on a manifold gives rise, through its parallel transport maps, to some notion of holonomy. The most common forms of holonomy are for connections possessing some kind of symmetry. Important examples include: holonomy of the Levi-Civit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]