Cactus Graph
   HOME



picture info

Cactus Graph
In graph theory, a cactus (sometimes called a cactus tree) is a connected graph in which any two simple cycles have at most one vertex in common. Equivalently, it is a connected graph in which every edge belongs to at most one simple cycle, or (for nontrivial cacti) in which every block (maximal subgraph without a cut-vertex) is an edge or a cycle. Properties Cacti are outerplanar graphs. Every pseudotree is a cactus. A nontrivial graph is a cactus if and only if every block is either a simple cycle or a single edge. The family of graphs in which each component is a cactus is downwardly closed under graph minor operations. This graph family may be characterized by a single forbidden minor, the four-vertex diamond graph formed by removing an edge from the complete graph ''K''4. Triangular cactus A triangular cactus is a special type of cactus graph such that each cycle has length three and each edge belongs to a cycle. For instance, the friendship graphs, graphs formed f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE