CYP2S1
   HOME
*





CYP2S1
Cytochrome P450 2S1 is a protein that in humans is encoded by the ''CYP2S1'' gene. The gene is located in chromosome 19q13.2 within a cluster including other CYP2 family members such as CYP2A6, CYP2A13, CYP2B6, and CYP2F1. Expression CYP2S1 is highly expressed in epithelial tissues of the respiratory, gastrointestinal, urinary tracts, and skin and in leukocytes of the monocyte/macrophage and lymphocyte series; it is also expressed throughout Embryogenesis and, as discussed below, certain types of cancers. Function This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum. In rodents, the homologous protein has been shown to metabolize certain carcinogens although its specific function(s) in humans has not been clearly determined. In in vitro stud ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Epoxygenase
Epoxygenases are a set of membrane-bound, heme-containing cytochrome P450 (CYP P450 or just CYP) enzymes that metabolize polyunsaturated fatty acids to epoxide products that have a range of biological activities. The most thoroughly studied substrate of the CYP epoxylgenases is arachidonic acid. This polyunsaturated fatty acid is metabolized by cyclooxygenases to various prostaglandin, thromboxane, and prostacyclin metabolites in what has been termed the first pathway of eicosanoid production; it is also metabolized by various lipoxygenases to hydroxyeicosatetraenoic acids (e.g. 5-Hydroxyeicosatetraenoic acid, 12-Hydroxyeicosatetraenoic acid, 15-hydroxyicosatetraenoic acid) and leukotrienes (e.g. leukotriene B4, leukotriene C4) in what has been termed the second pathway of eicosanoid production. The metabolism of arachidonic acid to epoxyeicosatrienoic acids by the CYP epoxygenases has been termed the third pathway of eicosanoid metabolism. Like the first two pathways of eic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Epoxyeicosatrienoic Acid
The epoxyeicosatrienoic acids or EETs are signaling molecules formed within various types of cells by the metabolism of arachidonic acid by a specific subset of Cytochrome P450 enzymes termed cytochrome P450 epoxygenases. These nonclassic eicosanoids are generally short-lived, being rapidly converted from epoxides to less active or inactive dihydroxy-eicosatrienoic acids (diHETrEs) by a widely distributed cellular enzyme, Soluble epoxide hydrolase (sEH), also termed Epoxide hydrolase 2. The EETs consequently function as transiently acting, short-range hormones; that is, they work locally to regulate the function of the cells that produce them (i.e. they are autocrine agents) or of nearby cells (i.e. they are paracrine agents). The EETs have been most studied in animal models where they show the ability to lower blood pressure possibly by a) stimulating arterial vasorelaxation and b) inhibiting the kidney's retention of salts and water to decrease intravascular blood volume. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Epoxydocosapentaenoic Acid
Epoxide docosapentaenoic acids (epoxydocosapentaenoic acids, EDPs, or EpDPEs) are metabolites of the 22-carbon straight-chain omega-3 fatty acid, docosahexaenoic acid (DHA). Cell types that express certain cytochrome P450 (CYP) epoxygenases metabolize polyunsaturated fatty acid's (PUFAs) by converting one of their double bonds to an epoxide. In the best known of these metabolic pathways, cellular CYP epoxygenases metabolize the 20-carbon straight-chain omega-6 fatty acid, arachidonic acid, to epoxyeicosatrienoic acids (EETs); another CYP epoxygenase pathway metabolizes the 20-carbon omega-3 fatty acid, eicosapentaenoic acid (EPA), to epoxyeicosatetraenoic acids (EEQs). CYP epoxygenases similarly convert various other PUFAs to epoxides (see epoxygenase) These epoxide metabolites have a variety of activities. However, essentially all of them are rapidly converted to their corresponding, but in general far less active, Vicinal (chemistry) dihydroxy fatty acids by ubiquitous cellu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prostaglandin G2
Prostaglandin G2 is an organic peroxide belonging to the family of prostaglandins. The compound has been isolated as a solid, although it is usually used in vivo. It quickly converts into prostaglandin H2, a process catalyzed by the enzyme COX. Prostaglandin G2 is produced from the fatty acid arachidonic acid. The reaction, an oxygenation, requires the enzyme cyclooxygenase Cyclooxygenase (COX), officially known as prostaglandin-endoperoxide synthase (PTGS), is an enzyme (specifically, a family of isozymes, ) that is responsible for formation of prostanoids, including thromboxane and prostaglandins such as prosta ..., which inserts two molecules of O2 into the C-H bonds of the substrate acid. References Prostaglandins {{organic-compound-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Acute Respiratory Distress
Acute respiratory distress syndrome (ARDS) is a type of respiratory failure characterized by rapid onset of widespread inflammation in the lungs. Symptoms include shortness of breath (dyspnea), rapid breathing (tachypnea), and bluish skin coloration (cyanosis). For those who survive, a decreased quality of life is common. Causes may include sepsis, pancreatitis, trauma, pneumonia, and aspiration. The underlying mechanism involves diffuse injury to cells which form the barrier of the microscopic air sacs of the lungs, surfactant dysfunction, activation of the immune system, and dysfunction of the body's regulation of blood clotting. In effect, ARDS impairs the lungs' ability to exchange oxygen and carbon dioxide. Adult diagnosis is based on a PaO2/FiO2 ratio (ratio of partial pressure arterial oxygen and fraction of inspired oxygen) of less than 300 mm Hg despite a positive end-expiratory pressure (PEEP) of more than 5 cm H2O. Cardiogenic pulmonary edema, as t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multiple Organ Failure
Multiple organ dysfunction syndrome (MODS) is altered organ function in an acutely ill patient requiring medical intervention to achieve homeostasis. Although Irwin and Rippe cautioned in 2005 that the use of "multiple organ failure" or "multisystem organ failure" should be avoided, both Harrison's (2015) and Cecil's (2012) medical textbooks still use the terms "multi-organ failure" and "multiple organ failure" in several chapters and do not use "multiple organ dysfunction syndrome" at all. There are different stages of organ dysfunction for certain different organs, both in acute and in chronic onset, whether or not there are one or more organs affected. Each stage of dysfunction (whether it be the heart, lung, liver, or kidney) has defined parameters, in terms of laboratory values based on blood and other tests, as to what it is (each of these organs' levels of failure is divided into stage I, II, III, IV, and V). The word "failure" is commonly used to refer to the later stages ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eicosatetraenoic Acid
Eicosatetraenoic acid (ETA) designates any straight chain 20:4 fatty acid. Eicosatetraenoic acid belongs to the family of eicosanoids, molecules synthesized from oxidized polyunsaturated fatty acids (PUFAs) to mediate cell-cell communication. The eicosanoids, working in tandem, contribute to a lipid signaling complex widely responsible for inducing an inflammatory immune response. Common signs of inflammation are both internal and external, with effects like visible redness, pain in the surrounding area, swelling, and the sensation of heat—many of these an effect of varying eicosanoid species. These effects are associated with and have been observed in patients with cancers and various neurological/metabolic disorders. :''See Essential Fatty Acid for nomenclature.'' Two isomers, both of them essential fatty acids, are of particular interest: * ''all-cis''-5,8,11,14-eicosatetraenoic acid is an ω-6 fatty acid with the trivial name arachidonic acid. It is formed by a desaturation o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angiogenesis
Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature by processes of sprouting and splitting. Vasculogenesis is the embryonic formation of endothelial cells from mesoderm cell precursors, and from neovascularization, although discussions are not always precise (especially in older texts). The first vessels in the developing embryo form through vasculogenesis, after which angiogenesis is responsible for most, if not all, blood vessel growth during development and in disease. Angiogenesis is a normal and vital process in growth and development, as well as in wound healing and in the formation of granulation tissue. However, it is also a fundamental step in the transition of tumors from a benign state to a malignant one, leading to the use of angiogenesis inhibitors in the treatment of cancer. The essential role of angiogenesis in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eicosapentaenoic Acid
Eicosapentaenoic acid (EPA; also icosapentaenoic acid) is an omega-3 fatty acid. In physiological literature, it is given the name 20:5(n-3). It also has the trivial name timnodonic acid. In chemical structure, EPA is a carboxylic acid with a 20-carbon chain and five ''cis'' double bonds; the first double bond is located at the third carbon from the omega end. EPA is a polyunsaturated fatty acid (PUFA) that acts as a precursor for prostaglandin-3 (which inhibits platelet aggregation), thromboxane-3, and leukotriene-5 eicosanoids. EPA is both a precursor and the hydrolytic breakdown product of eicosapentaenoyl ethanolamide (EPEA: C22 H35 NO2; 20:5,n-3). Although studies of fish oil supplements, which contain both docosahexaenoic acid (DHA) and EPA, have failed to support claims of preventing heart attacks or strokes, a recent multi-year study of Vascepa ( ethyl eicosapentaenoate, the ethyl ester of the free fatty acid), a prescription drug containing only EPA, was shown to re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polyunsaturated Fatty Acid
Polyunsaturated fatty acids (PUFAs) are fatty acids that contain more than one double bond in their backbone. This class includes many important compounds, such as essential fatty acids and those that give drying oils their characteristic property. Polyunsaturated fatty acids can be classified in various groups by their chemical structure: * methylene-interrupted polyenes * conjugated fatty acids * other PUFAs Based on the length of their carbon backbone, they are sometimes classified in two groups: * short chain polyunsaturated fatty acids (SC-PUFA), with 18 carbon atoms * long-chain polyunsaturated fatty acids (LC-PUFA) with 20 or more carbon atoms Dietary sources Types Methylene-interrupted polyenes These fatty acids have 2 or more ''Cis-trans isomerism, cis'' double bonds that are separated from each other by a single methylene bridge (--). This form is also sometimes called a ''divinylmethane pattern''. The essential fatty acids are all omega-3 and -6 methylene-i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coronaric Acid
Coronaric acid (isoleukotoxin) is a mono-unsaturated, epoxide derivative of the di-saturated fatty acid, linoleic acid (i.e. 9(''Z''),12(''Z'') octadecadienoic acid. It is a mixture of the two optically active isomers of 12(''Z'') 9,10-epoxy-octadecenoic acid. This mixture is also termed 9,10-epoxy-12Z-octadecenoic acid or 9(10)-EpOME and when formed by or studied in mammalians, isoleukotoxin. Occurrence Coronaric acid is found in the seed oils derived from plants in sunflower family such as (Helianthus annuus) and Xeranthemum annuum. Coronaric acid is also formed by the cells and tissues of various mammalian (including humans) species through the metabolism of linoleic acid by cytochrome P450 (CYP) epoxygenase enzymes. These CYPs (CYP2C9 and probably other CYPs that metabolize polyunsaturated fatty acids to epoxides) metabolize linoleic acid to (+)12''S'',13''R''-epoxy-9(''Z'')-octadecaenoic acid and (-)12''R'',13''S''-epoxy-9(''Z'')-octadecaenoic acid, i.e. the (+) and (-) ep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]