CIPHERUNICORN-E
   HOME
*





CIPHERUNICORN-E
In cryptography, CIPHERUNICORN-E is a block cipher created by NEC in 1998. It was among the cryptographic techniques recommended for Japanese government use by CRYPTREC in 2003. However, it has been dropped to "candidate" level by the CRYPTREC revision of 2013. The algorithm has a 16-round modified Feistel network structure, with an additional key-dependent mixing function after every 2 rounds. The block size is 64 bits, and the key size 128 bits. The round function is fairly complicated, split into two nearly parallel computations. The first part (called the ''main stream'' by the designers) consists of XORs and S-box lookups, with a few choices influenced by the second part. This second function (called ''temporary key generation'') uses more XORs and two operations which are equivalent to modular multiplications. Subkeys are added at various stages of both parts of the round function. There are 4 S-boxes in all, each with 8-bit inputs and outputs. In 2000, NEC used the same ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CIPHERUNICORN-A
In cryptography, CIPHERUNICORN-A is a block cipher created by NEC in 2000. It was among the cryptographic techniques recommended for Japanese government use by CRYPTREC in 2003. However, it has been dropped to "candidate" level by the CRYPTREC revision of 2013. The algorithm uses a 16-round Feistel network structure similar to its predecessor, CIPHERUNICORN-E, but with significant changes. The block size is 128 bits, with key sizes of 128, 192, or 256 bits. The round function is even more complicated than that of CIPHERUNICORN-E, but the extra mixing function between rounds has been removed. The round function is still split into two nearly parallel computations; both of these are Feistel networks themselves. The first part (the ''main stream'') is a 10-round Feistel network, using four 8×8-bit S-boxes much like the ones from CIPHERUNICORN-E. The last two rounds of the main stream are influenced by the output of the second part (the ''temporary key generation function''). Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CRYPTREC
CRYPTREC is the Cryptography Research and Evaluation Committees set up by the Japanese Government to evaluate and recommend cryptographic techniques for government and industrial use. It is comparable in many respects to the European Union's NESSIE project and to the Advanced Encryption Standard process run by National Institute of Standards and Technology in the U.S. Comparison with NESSIE There is some overlap, and some conflict, between the NESSIE selections and the CRYPTREC draft recommendations. Both efforts include some of the best cryptographers in the world therefore conflicts in their selections and recommendations should be examined with care. For instance, CRYPTREC recommends several 64 bit block ciphers while NESSIE selected none, but CRYPTREC was obliged by its terms of reference to take into account existing standards and practices, while NESSIE was not. Similar differences in terms of reference account for CRYPTREC recommending at least one stream cipher, RC4, while ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Feistel Cipher
In cryptography, a Feistel cipher (also known as Luby–Rackoff block cipher) is a symmetric structure used in the construction of block ciphers, named after the German-born physicist and cryptographer Horst Feistel, who did pioneering research while working for IBM; it is also commonly known as a Feistel network. A large proportion of block ciphers use the scheme, including the US Data Encryption Standard, the Soviet/Russian GOST and the more recent Blowfish and Twofish ciphers. In a Feistel cipher, encryption and decryption are very similar operations, and both consist of iteratively running a function called a "round function" a fixed number of times. History Many modern symmetric block ciphers are based on Feistel networks. Feistel networks were first seen commercially in IBM's Lucifer cipher, designed by Horst Feistel and Don Coppersmith in 1973. Feistel networks gained respectability when the U.S. Federal Government adopted the DES (a cipher based on Lucifer, with changes mad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Block Cipher
In cryptography, a block cipher is a deterministic algorithm operating on fixed-length groups of bits, called ''blocks''. Block ciphers are specified cryptographic primitive, elementary components in the design of many cryptographic protocols and are widely used to encryption, encrypt large amounts of data, including in data exchange protocols. A block cipher uses blocks as an unvarying transformation. Even a secure block cipher is suitable for the encryption of only a single block of data at a time, using a fixed key. A multitude of block cipher modes of operation, modes of operation have been designed to allow their repeated use in a secure way to achieve the security goals of confidentiality and authentication, authenticity. However, block ciphers may also feature as building blocks in other cryptographic protocols, such as universal hash functions and pseudorandom number generators. Definition A block cipher consists of two paired algorithms, one for encryption, , and the othe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Block Size (cryptography)
In modern cryptography, symmetric key ciphers are generally divided into stream ciphers and block ciphers. Block ciphers operate on a fixed length string of bits. The length of this bit string is the block size. Both the input (plaintext) and output (ciphertext) are the same length; the output cannot be shorter than the input this follows logically from the pigeonhole principle and the fact that the cipher must be reversibleand it is undesirable for the output to be longer than the input. Until the announcement of NIST's AES contest, the majority of block ciphers followed the example of the DES in using a block size of 64 bits (8 bytes). However the birthday paradox tells us that after accumulating a number of blocks equal to the square root of the total number possible, there will be an approximately 50% chance of two or more being the same, which would start to leak information about the message contents. Thus even when used with a proper encryption mode (e.g. CBC or OFB), only ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Key Size
In cryptography, key size, key length, or key space refer to the number of bits in a key used by a cryptographic algorithm (such as a cipher). Key length defines the upper-bound on an algorithm's security (i.e. a logarithmic measure of the fastest known attack against an algorithm), since the security of all algorithms can be violated by brute-force attacks. Ideally, the lower-bound on an algorithm's security is by design equal to the key length (that is, the security is determined entirely by the keylength, or in other words, the algorithm's design does not detract from the degree of security inherent in the key length). Indeed, most symmetric-key algorithms are designed to have security equal to their key length. However, after design, a new attack might be discovered. For instance, Triple DES was designed to have a 168-bit key, but an attack of complexity 2112 is now known (i.e. Triple DES now only has 112 bits of security, and of the 168 bits in the key the attack has rendered 5 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Substitution Box
In cryptography, an S-box (substitution-box) is a basic component of symmetric key algorithms which performs substitution. In block ciphers, they are typically used to obscure the relationship between the key and the ciphertext, thus ensuring Shannon's property of confusion. Mathematically, an S-box is a vectorial Boolean function. In general, an S-box takes some number of input bits, ''m'', and transforms them into some number of output bits, ''n'', where ''n'' is not necessarily equal to ''m''. An ''m''×''n'' S-box can be implemented as a lookup table with 2''m'' words of ''n'' bits each. Fixed tables are normally used, as in the Data Encryption Standard (DES), but in some ciphers the tables are generated dynamically from the key (e.g. the Blowfish and the Twofish encryption algorithms). Example One good example of a fixed table is the S-box from DES (S5), mapping 6-bit input into a 4-bit output: Given a 6-bit input, the 4-bit output is found by selecting the row using th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book ''Disquisitiones Arithmeticae'', published in 1801. A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in , but clocks "wrap around" every 12 hours. Because the hour number starts over at zero when it reaches 12, this is arithmetic ''modulo'' 12. In terms of the definition below, 15 is ''congruent'' to 3 modulo 12, so "15:00" on a 24-hour clock is displayed "3:00" on a 12-hour clock. Congruence Given an integer , called a modulus, two integers and are said to be congruent modulo , if is a divisor of their difference (that is, if there is an integer such that ). Congruence modulo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Key Schedule
In cryptography, the so-called product ciphers are a certain kind of cipher, where the (de-)ciphering of data is typically done as an iteration of ''rounds''. The setup for each round is generally the same, except for round-specific fixed values called a round constant, and round-specific data derived from the cipher key called a round key. A key schedule is an algorithm that calculates all the round keys from the key. Some types of key schedules *Some ciphers have simple key schedules. For example, the block cipher TEA splits the 128-bit key into four 32-bit pieces and uses them repeatedly in successive rounds. *DES has a key schedule in which the 56-bit key is divided into two 28-bit halves; each half is thereafter treated separately. In successive rounds, both halves are rotated left by one or two bits (specified for each round), and then 48 round key bits are selected by Permuted Choice 2 (PC-2) – 24 bits from the left half and 24 from the right. The rotations have t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Cryptanalysis
Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block ciphers, but also to stream ciphers and cryptographic hash functions. In the broadest sense, it is the study of how differences in information input can affect the resultant difference at the output. In the case of a block cipher, it refers to a set of techniques for tracing differences through the network of transformation, discovering where the cipher exhibits non-random behavior, and exploiting such properties to recover the secret key (cryptography key). History The discovery of differential cryptanalysis is generally attributed to Eli Biham and Adi Shamir in the late 1980s, who published a number of attacks against various block ciphers and hash functions, including a theoretical weakness in the Data Encryption Standard (DES). It was noted by Biham and Shamir that DES was surprisingly resistant to differential cryptanalysis but small modifications to the algorithm would make it much mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Linear Cryptanalysis
In cryptography, linear cryptanalysis is a general form of cryptanalysis based on finding affine approximations to the action of a cipher. Attacks have been developed for block ciphers and stream ciphers. Linear cryptanalysis is one of the two most widely used attacks on block ciphers; the other being differential cryptanalysis. The discovery is attributed to Mitsuru Matsui, who first applied the technique to the FEAL cipher (Matsui and Yamagishi, 1992). Subsequently, Matsui published an attack on the Data Encryption Standard (DES), eventually leading to the first experimental cryptanalysis of the cipher reported in the open community (Matsui, 1993; 1994). The attack on DES is not generally practical, requiring 247 known plaintexts. A variety of refinements to the attack have been suggested, including using multiple linear approximations or incorporating non-linear expressions, leading to a generalized partitioning cryptanalysis. Evidence of security against linear cryptanalysis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]