CH-quasigroup
   HOME





CH-quasigroup
In mathematics, a CH-quasigroup, introduced by , is a symmetric quasigroup In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure that resembles a group in the sense that " division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element pro ... in which any three elements generate an abelian quasigroup. "CH" stands for cubic hypersurface. References * Non-associative algebra {{abstract-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quasigroup
In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure that resembles a group in the sense that " division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element properties are optional. In fact, a nonempty associative quasigroup is a group. A quasigroup that has an identity element is called a loop. Definitions There are at least two structurally equivalent formal definitions of quasigroup: * One defines a quasigroup as a set with one binary operation. * The other, from universal algebra, defines a quasigroup as having three primitive operations. The homomorphic image of a quasigroup that is defined with a single binary operation, however, need not be a quasigroup, in contrast to a quasigroup as having three primitive operations. We begin with the first definition. Algebra A quasigroup is a non-empty set with a binary operation (that is, a magma, indicating that a quasigroup has to sat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cubic Hypersurface
In mathematics, a cubic form is a homogeneous polynomial of degree 3, and a cubic hypersurface is the zero set of a cubic form. In the case of a cubic form in three variables, the zero set is a cubic plane curve. In , Boris Delone and Dmitry Faddeev showed that binary cubic forms with integer coefficients can be used to parametrize orders in cubic fields. Their work was generalized in to include all cubic rings (a is a ring that is isomorphic to Z3 as a Z-module),In fact, Pierre Deligne pointed out that the correspondence works over an arbitrary scheme. giving a discriminant-preserving bijection between orbits of a GL(2, Z)-action on the space of integral binary cubic forms and cubic rings up to isomorphism. The classification of real cubic forms a x^3 + 3 b x^2 y + 3 c x y^2 + d y^3 is linked to the classification of umbilical points of surfaces. The equivalence classes of such cubics form a three-dimensional real projective space and the subset of parabolic forms def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]