CAL Actor Language
   HOME





CAL Actor Language
CAL (the Cal Actor Language) is a high-level programming languageCAL Language Report: Specification of the CAL actor language, Johan Eker and Jörn W. Janneck, Technical Memorandum No. UCB/ERL M03/48, University of California, Berkeley, CA, 94720, USA, December 1, 2003 for writing (dataflow) actors, which are stateful operators that transform input streams of data objects (tokens) into output streams. CAL has been compiled to a variety of target platforms, including single-core processors, multicore processors, and programmable hardware. It has been used in several application areas, including video and processing, compression and cryptography. The MPEG Reconfigurable Video Coding (RVC)Overview of the MPEG Reconfigurable Video Coding Framework, Shuvra S. Bhattacharyya, Johan Eker, Jörn W. Janneck, Christophe Lucarz, Marco Mattavelli, Mickaël Raulet, ''Journal of Signal Processing Systems, 2009, Springer'' working group has adopted CAL as part of their standardization efforts. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dataflow Programming
In computer programming, dataflow programming is a programming paradigm that models a program as a directed graph of the data flowing between operations, thus implementing dataflow principles and architecture. Dataflow programming languages share some features of functional languages, and were generally developed in order to bring some functional concepts to a language more suitable for numeric processing. Some authors use the term ''datastream'' instead of ''dataflow'' to avoid confusion with dataflow computing or dataflow architecture, based on an indeterministic machine paradigm. Dataflow programming was pioneered by Jack Dennis and his graduate students at MIT in the 1960s. Considerations Traditionally, a program is modelled as a series of operations happening in a specific order; this may be referred to as sequential, procedural, control flow (indicating that the program chooses a specific path), or imperative programming. The program focuses on commands, in line with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use Conditional (computer programming), conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a Heuristic (computer science), heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unary Operation
In mathematics, a unary operation is an operation with only one operand, i.e. a single input. This is in contrast to ''binary operations'', which use two operands. An example is any function , where is a set; the function is a unary operation on . Common notations are prefix notation (e.g. ¬, −), postfix notation (e.g. factorial ), functional notation (e.g. or ), and superscripts (e.g. transpose ). Other notations exist as well, for example, in the case of the square root, a horizontal bar extending the square root sign over the argument can indicate the extent of the argument. Examples Absolute value Obtaining the absolute value of a number is a unary operation. This function is defined as , n, = \begin n, & \mbox n\geq0 \\ -n, & \mbox n<0 \end where , n, is the absolute value of n.


Negation




MORE