Substring Indices
   HOME
*



picture info

Substring Indices
In formal language theory and computer science, a substring is a contiguous sequence of characters within a string. For instance, "''the best of''" is a substring of "''It was the best of times''". In contrast, "''Itwastimes''" is a subsequence of "''It was the best of times''", but not a substring. Prefixes and suffixes are special cases of substrings. A prefix of a string S is a substring of S that occurs at the beginning of S; likewise, a suffix of a string S is a substring that occurs at the end of S. The substrings of the string "''apple''" would be: "''a''", "''ap''", "''app''", "''appl''", "''apple''", "''p''", "''pp''", "''ppl''", "''pple''", "''pl''", "''ple''", "''l''", "''le''" "''e''", "" (note the empty string at the end). Substring A string u is a substring (or factor) of a string t if there exists two strings p and s such that t = pus. In particular, the empty string is a substring of every string. Example: The string u=ana is equal to substrings (and subseq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Subsequence
In mathematics, a subsequence of a given sequence is a sequence that can be derived from the given sequence by deleting some or no elements without changing the order of the remaining elements. For example, the sequence \langle A,B,D \rangle is a subsequence of \langle A,B,C,D,E,F \rangle obtained after removal of elements C, E, and F. The relation of one sequence being the subsequence of another is a preorder. Subsequences can contain consecutive elements which were not consecutive in the original sequence. A subsequence which consists of a consecutive run of elements from the original sequence, such as \langle B,C,D \rangle, from \langle A,B,C,D,E,F \rangle, is a substring. The substring is a refinement of the subsequence. The list of all subsequences for the word "apple" would be "''a''", "''ap''", "''al''", "''ae''", "''app''", "''apl''", "''ape''", "''ale''", "''appl''", "''appe''", "''aple''", "''apple''", "''p''", "''pp''", "''pl''", "''pe''", "''ppl''", "''ppe''", "''ple' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prefix Relation
In computer science, in the area of formal language theory, frequent use is made of a variety of string functions; however, the notation used is different from that used for computer programming, and some commonly used functions in the theoretical realm are rarely used when programming. This article defines some of these basic terms. Strings and languages A string is a finite sequence of characters. The empty string is denoted by \varepsilon. The concatenation of two string s and t is denoted by s \cdot t, or shorter by s t. Concatenating with the empty string makes no difference: s \cdot \varepsilon = s = \varepsilon \cdot s. Concatenation of strings is associative: s \cdot (t \cdot u) = (s \cdot t) \cdot u. For example, (\langle b \rangle \cdot \langle l \rangle) \cdot (\varepsilon \cdot \langle ah \rangle) = \langle bl \rangle \cdot \langle ah \rangle = \langle blah \rangle. A language is a finite or infinite set of strings. Besides the usual set operations like union, inter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Substring Index
In computer science, a substring index is a data structure which gives substring search in a text or text collection in sublinear time. If you have a document S of length n, or a set of documents D=\ of total length n, you can locate all occurrences of a pattern P in o(n) time. (See Big O notation.) The phrase full-text index is also often used for an index of all substrings of a text. But is ambiguous, as it is also used for regular word indexes such as inverted files and document retrieval. See full text search. Substring indexes include: * Suffix tree * Suffix array * N-gram index, an inverted file for all N-grams of the text * Compressed suffix arrayR. Grossi and J. S. VitterCompressed Suffix Arrays and Suffix Trees, with Applications to Text Indexing and String Matching ''SIAM Journal on Computing,'' 35(2), 2005, 378-407. * FM-index * LZ-index References

{{reflist Algorithms on strings String data structures Database index techniques Substring indices, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brace Notation
In several programming languages, such as Perl, brace notation is a faster way to extract bytes from a string variable. In pseudocode An example of brace notation using pseudocode which would extract the 82nd character from the string is: a_byte = a_string The equivalent of this using a hypothetical function 'MID' is: a_byte = MID(a_string, 82, 1) In C In C, strings are normally represented as a character array rather than an actual string data type. The fact a string is really an array of characters means that referring to a string would mean referring to the first element in an array. Hence in C, the following is a legitimate example of brace notation: #include #include #include int main(int argc, char* argv[]) Note that each of a_string[n] would have a 'char' data type while a_string itself would return a pointer to the first element in the a_string character array. In C# C# handles brace notation differently. A string is a primitive type that returns a char when e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superpermutation
In combinatorial mathematics, a superpermutation on ''n'' symbols is a string that contains each permutation of ''n'' symbols as a substring. While trivial superpermutations can simply be made up of every permutation listed together, superpermutations can also be shorter (except for the trivial case of ''n'' = 1) because overlap is allowed. For instance, in the case of ''n'' = 2, the superpermutation 1221 contains all possible permutations (12 and 21), but the shorter string 121 also contains both permutations. It has been shown that for 1 ≤ ''n'' ≤ 5, the smallest superpermutation on ''n'' symbols has length 1! + 2! + … + ''n''! . The first four smallest superpermutations have respective lengths 1, 3, 9, and 33, forming the strings 1, 121, 123121321, and 123412314231243121342132413214321. However, for ''n'' = 5, there are several smallest superpermutations having the length 153. One such superpermutation is shown below, while another of the same length can be obtained by s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Suffix Array
In computer science, a suffix array is a sorted array of all suffixes of a string. It is a data structure used in, among others, full-text indices, data-compression algorithms, and the field of bibliometrics. Suffix arrays were introduced by as a simple, space efficient alternative to suffix trees. They had independently been discovered by Gaston Gonnet in 1987 under the name ''PAT array'' . gave the first in-place \mathcal(n) time suffix array construction algorithm that is optimal both in time and space, where ''in-place'' means that the algorithm only needs \mathcal(1) additional space beyond the input string and the output suffix array. Enhanced suffix arrays (ESAs) are suffix arrays with additional tables that reproduce the full functionality of suffix trees preserving the same time and memory complexity. The suffix array for a subset of all suffixes of a string is called sparse suffix array. Multiple probabilistic algorithms have been developed to minimize the additiona ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Structure
In computer science, a data structure is a data organization, management, and storage format that is usually chosen for efficient access to data. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, i.e., it is an algebraic structure about data. Usage Data structures serve as the basis for abstract data types (ADT). The ADT defines the logical form of the data type. The data structure implements the physical form of the data type. Different types of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, relational databases commonly use B-tree indexes for data retrieval, while compiler implementations usually use hash tables to look up identifiers. Data structures provide a means to manage large amounts of data efficiently for uses such as large databases and internet indexing services. Usually, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trie
In computer science, a trie, also called digital tree or prefix tree, is a type of ''k''-ary search tree, a tree data structure used for locating specific keys from within a set. These keys are most often strings, with links between nodes defined not by the entire key, but by individual characters. In order to access a key (to recover its value, change it, or remove it), the trie is traversed depth-first, following the links between nodes, which represent each character in the key. Unlike a binary search tree, nodes in the trie do not store their associated key. Instead, a node's position in the trie defines the key with which it is associated. This distributes the value of each key across the data structure, and means that not every node necessarily has an associated value. All the children of a node have a common prefix of the string associated with that parent node, and the root is associated with the empty string. This task of storing data accessible by its prefix can be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Suffix Tree
In computer science, a suffix tree (also called PAT tree or, in an earlier form, position tree) is a compressed trie containing all the suffixes of the given text as their keys and positions in the text as their values. Suffix trees allow particularly fast implementations of many important string operations. The construction of such a tree for the string S takes time and space linear in the length of S. Once constructed, several operations can be performed quickly, for instance locating a substring in S, locating a substring if a certain number of mistakes are allowed, locating matches for a regular expression pattern etc. Suffix trees also provide one of the first linear-time solutions for the longest common substring problem. These speedups come at a cost: storing a string's suffix tree typically requires significantly more space than storing the string itself. History The concept was first introduced by . Rather than the suffix S ..n/math>, Weiner stored in his trie the ''pref ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prefix Order
In mathematics, especially order theory, a prefix ordered set generalizes the intuitive concept of a tree by introducing the possibility of continuous progress and continuous branching. Natural prefix orders often occur when considering dynamical systems as a set of functions from ''time'' (a totally-ordered set) to some phase space. In this case, the elements of the set are usually referred to as ''executions'' of the system. The name ''prefix order'' stems from the prefix order on words, which is a special kind of substring relation and, because of its discrete character, a tree. Formal definition A prefix order is a binary relation "≤" over a set ''P'' which is antisymmetric, transitive, reflexive, and downward total, i.e., for all ''a'', ''b'', and ''c'' in ''P'', we have that: *''a ≤ a'' (reflexivity); *if ''a ≤ b'' and ''b ≤ a'' then ''a'' = ''b'' (antisymmetry); *if ''a ≤ b'' and ''b ≤ c'' then ''a ≤ c'' (transitivity); *if ''a ≤ c'' and ''b ≤ c'' t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of elements in and in . It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element is ''related'' to an element , if and only if the pair belongs to the set of ordered pairs that defines the ''binary relation''. A binary relation is the most studied special case of an Finitary relation, -ary relation over sets , which is a subset of the Cartesian product X_1 \times \cdots \times X_n. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime is related to each integer that is a Divisibility, multiple of , but not to an integer that is not a multiple of . In this relation, for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Substring
In formal language theory and computer science, a substring is a contiguous sequence of characters within a string. For instance, "''the best of''" is a substring of "''It was the best of times''". In contrast, "''Itwastimes''" is a subsequence of "''It was the best of times''", but not a substring. Prefixes and suffixes are special cases of substrings. A prefix of a string S is a substring of S that occurs at the beginning of S; likewise, a suffix of a string S is a substring that occurs at the end of S. The substrings of the string "''apple''" would be: "''a''", "''ap''", "''app''", "''appl''", "''apple''", "''p''", "''pp''", "''ppl''", "''pple''", "''pl''", "''ple''", "''l''", "''le''" "''e''", "" (note the empty string at the end). Substring A string u is a substring (or factor) of a string t if there exists two strings p and s such that t = pus. In particular, the empty string is a substring of every string. Example: The string u=ana is equal to substrings (and subse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]