Runge–Kutta Methods
   HOME
*



picture info

Runge–Kutta Methods
In numerical analysis, the Runge–Kutta methods ( ) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. These methods were developed around 1900 by the German mathematicians Carl Runge and Wilhelm Kutta. The Runge–Kutta method The most widely known member of the Runge–Kutta family is generally referred to as "RK4", the "classic Runge–Kutta method" or simply as "the Runge–Kutta method". Let an initial value problem be specified as follows: : \frac = f(t, y), \quad y(t_0) = y_0. Here y is an unknown function (scalar or vector) of time t, which we would like to approximate; we are told that \frac, the rate at which y changes, is a function of t and of y itself. At the initial time t_0 the corresponding y value is y_0. The function f and the initial conditions t_0, y_0 are given. Now we pick a step-size ''h'' > 0 and define: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Autonomous System (mathematics)
In mathematics, an autonomous system or autonomous differential equation is a system of ordinary differential equations which does not explicitly depend on the independent variable. When the variable is time, they are also called time-invariant systems. Many laws in physics, where the independent variable is usually assumed to be time, are expressed as autonomous systems because it is assumed the laws of nature which hold now are identical to those for any point in the past or future. Definition An autonomous system is a system of ordinary differential equations of the form \fracx(t)=f(x(t)) where takes values in -dimensional Euclidean space; is often interpreted as time. It is distinguished from systems of differential equations of the form \fracx(t)=g(x(t),t) in which the law governing the evolution of the system does not depend solely on the system's current state but also the parameter , again often interpreted as time; such systems are by definition not autonomous. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Multistep Method
Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution. Single-step methods (such as Euler's method) refer to only one previous point and its derivative to determine the current value. Methods such as Runge–Kutta take some intermediate steps (for example, a half-step) to obtain a higher order method, but then discard all previous information before taking a second step. Multistep methods attempt to gain efficiency by keeping and using the information from previous steps rather than discarding it. Consequently, multistep methods refer to several previous points and derivative values. In the case of ''linear'' multistep methods, a linear combination of the previous points and derivative values is used. Definitions Numerical methods ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Runge–Kutta Methods
In numerical analysis, the Runge–Kutta methods ( ) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. These methods were developed around 1900 by the German mathematicians Carl Runge and Wilhelm Kutta. The Runge–Kutta method The most widely known member of the Runge–Kutta family is generally referred to as "RK4", the "classic Runge–Kutta method" or simply as "the Runge–Kutta method". Let an initial value problem be specified as follows: : \frac = f(t, y), \quad y(t_0) = y_0. Here y is an unknown function (scalar or vector) of time t, which we would like to approximate; we are told that \frac, the rate at which y changes, is a function of t and of y itself. At the initial time t_0 the corresponding y value is y_0. The function f and the initial conditions t_0, y_0 are given. Now we pick a step-size ''h'' > 0 and define: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Partial Differential Equations
Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Overview of methods Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values. Method of lines The method of lines (MOL, NMOL, NUMOLHamdi, S., W. E. Schiesser and G. W. Griffiths (2007) Method of lines ''Scholarpedia'', 2(7):2859.) is a technique for solving partial differential equations (PDEs) in which all dimensions except one are discretized. MOL allows standard, general-purpose methods and software, developed for the numerical integration of ordinary differential equations (ODEs) and differential algebraic equations (DAEs), to be used. A large number of integration routines have been ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stiff Equation
In mathematics, a stiff equation is a differential equation for which certain numerical methods for solving the equation are numerically unstable, unless the step size is taken to be extremely small. It has proven difficult to formulate a precise definition of stiffness, but the main idea is that the equation includes some terms that can lead to rapid variation in the solution. When integrating a differential equation numerically, one would expect the requisite step size to be relatively small in a region where the solution curve displays much variation and to be relatively large where the solution curve straightens out to approach a line with slope nearly zero. For some problems this is not the case. In order for a numerical method to give a reliable solution to the differential system sometimes the step size is required to be at an unacceptably small level in a region where the solution curve is very smooth. The phenomenon is known as ''stiffness''. In some cases there may be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Explicit And Implicit Methods
Explicit and implicit methods are approaches used in numerical analysis for obtaining numerical approximations to the solutions of time-dependent ordinary and partial differential equations, as is required in computer simulations of physical processes. ''Explicit methods'' calculate the state of a system at a later time from the state of the system at the current time, while ''implicit methods'' find a solution by solving an equation involving both the current state of the system and the later one. Mathematically, if Y(t) is the current system state and Y(t+\Delta t) is the state at the later time (\Delta t is a small time step), then, for an explicit method : Y(t+\Delta t) = F(Y(t))\, while for an implicit method one solves an equation : G\Big(Y(t), Y(t+\Delta t)\Big)=0 \qquad (1)\, to find Y(t+\Delta t). Computation Implicit methods require an extra computation (solving the above equation), and they can be much harder to implement. Implicit methods are used because many pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dormand–Prince Method
In numerical analysis, the Dormand–Prince (RKDP) method or DOPRI method, is an embedded method for solving ordinary differential equations . The method is a member of the Runge–Kutta family of ODE solvers. More specifically, it uses six function evaluations to calculate fourth- and fifth-order accurate solutions. The difference between these solutions is then taken to be the error of the (fourth-order) solution. This error estimate is very convenient for adaptive stepsize integration algorithms. Other similar integration methods are Fehlberg (RKF) and Cash–Karp (RKCK). The Dormand–Prince method has seven stages, but it uses only six function evaluations per step because it has the FSAL (First Same As Last) property: the last stage is evaluated at the same point as the first stage of the next step. Dormand and Prince chose the coefficients of their method to minimize the error of the fifth-order solution. This is the main difference with the Fehlberg method, which was con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cash–Karp Method
In numerical analysis, the Cash–Karp method is a method for solving ordinary differential equations (ODEs). It was proposed by Professor Jeff R. Cash from Imperial College London and Alan H. Karp from IBM Scientific Center. The method is a member of the Runge–Kutta family of ODE solvers. More specifically, it uses six function evaluations to calculate fourth- and fifth-order accurate solutions. The difference between these solutions is then taken to be the error of the (fourth order) solution. This error estimate is very convenient for adaptive stepsize integration algorithms. Other similar integration methods are Fehlberg (RKF) and Dormand–Prince (RKDP). The Butcher tableau is: The first row of ''b'' coefficients gives the fifth-order accurate solution, and the second row gives the fourth-order solution. See also * Adaptive Runge–Kutta methods * List of Runge–Kutta methods Runge–Kutta methods are methods for the numerical solution of the ordinary differential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bogacki–Shampine Method
The Bogacki–Shampine method is a method for the numerical solution of ordinary differential equations, that was proposed by Przemysław Bogacki and Lawrence F. Shampine in 1989 . The Bogacki–Shampine method is a Runge–Kutta method of order three with four stages with the First Same As Last (FSAL) property, so that it uses approximately three function evaluations per step. It has an embedded second-order method which can be used to implement adaptive step size. The Bogacki–Shampine method is implemented in the ode3 for fixed step solver and ode23 for a variable step solver function in MATLAB . Low-order methods are more suitable than higher-order methods like the Dormand–Prince method of order five, if only a crude approximation to the solution is required. Bogacki and Shampine argue that their method outperforms other third-order methods with an embedded method of order two. The Butcher tableau A butcher is a person who may slaughter animals, dress their flesh, se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Runge–Kutta–Fehlberg Method
In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods. The novelty of Fehlberg's method is that it is an embedded method from the Runge–Kutta family, meaning that identical function evaluations are used in conjunction with each other to create methods of varying order and similar error constants. The method presented in Fehlberg's 1969 paper has been dubbed the RKF45 method, and is a method of order O(''h''4) with an error estimator of order O(''h''5). By performing one extra calculation, the error in the solution can be estimated and controlled by using the higher-order embedded method that allows for an adaptive stepsize to be determined automatically. Butcher tableau for Fehlberg's 4(5) method Any Runge–Kutta method is uniquely identi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heun's Method
In mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem: :y'(t) = f(t,y(t)), \qquad \qquad y(t_0)=y_0, by way of Heun's method, is to first calculate the intermediate value \tilde_ and then the final approximation y_ at the next integration point. :\tilde_ = y_i + h f(t_i,y_i) :y_ = y_i + \frac (t_i, y_i) + f(t_,\tilde_) : where h is the step size and t_=t_i+h. Description Euler's method is used as the foundation for Heun's method. Euler's method uses the line tangent to the function at the beginning of the interval ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]