Kleinian Groups
   HOME





Kleinian Groups
In mathematics, a Kleinian group is a discrete subgroup of the group (mathematics), group of orientation-preserving Isometry, isometries of hyperbolic 3-space . The latter, identifiable with PSL(2,C), , is the quotient group of the 2 by 2 complex number, complex matrix (mathematics), matrices of determinant 1 by their center (group theory), center, which consists of the identity matrix and its product by . has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball in . The group of Möbius transformation, Möbius transformations is also related as the non-orientation-preserving isometry group of , . So, a Kleinian group can be regarded as a discrete subgroup group action, acting on one of these spaces. History The theory of general Kleinian groups was founded by and , who named them after Felix Klein. The special case of Schottky groups had been studied a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Klein Four-group
In mathematics, the Klein four-group is an abelian group with four elements, in which each element is Involution (mathematics), self-inverse (composing it with itself produces the identity) and in which composing any two of the three non-identity elements produces the third one. It can be described as the symmetry group of a non-square rectangle (with the three non-identity elements being horizontal reflection, vertical reflection and 180-degree rotation), as the group of bitwise operation, bitwise exclusive or, exclusive-or operations on two-bit binary values, or more abstract algebra, abstractly as \mathbb_2\times\mathbb_2, the Direct product of groups, direct product of two copies of the cyclic group of Order (group theory), order 2 by the Fundamental theorem of finitely generated abelian groups, Fundamental Theorem of Finitely Generated Abelian Groups. It was named ''Vierergruppe'' (, meaning four-group) by Felix Klein in 1884. It is also called the Klein group, and is often ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action
In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under function composition; for example, the rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures dra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quotient Space (topology)
In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space. Intuitively speaking, the points of each equivalence class are or "glued together" for forming a new topological space. For example, identifying the points of a sphere that belong to the same diameter produces the projective plane as a quotient space. Definition Let X be a topological space, and let \sim be an equivalence relation on X. The quotient set Y = X/ is the set of equivalence classes of elements of X. The e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperbolic 3-manifold
In mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group). Hyperbolic 3-manifolds of finite volume have a particular importance in 3-dimensional topology as follows from Thurston's geometrisation conjecture proved by Perelman. The study of Kleinian groups is also an important topic in geometric group theory. Importance in topology Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is far from bein ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Group
In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have Group isomorphism, isomorphic fundamental groups. The fundamental group of a topological space X is denoted by \pi_1(X). Intuition Start with a space (for example, a surface (mathematics), surface), and some point in it, and all the loops both starting and ending at this point—path (topology), paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined in an obvious way: travel along the first loop, then alo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Linear Group
In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associated projective space P(''V''). Explicitly, the projective linear group is the quotient group : PGL(''V'') = GL(''V'')/Z(''V'') where GL(''V'') is the general linear group of ''V'' and Z(''V'') is the subgroup of all nonzero scalar transformations of ''V''; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group. The projective special linear group, PSL, is defined analogously, as the induced action of the special linear group on the associated projective space. Explicitly: : PSL(''V'') = SL(''V'')/SZ(''V'') where SL(''V'') is the special linear group over ''V'' and SZ('' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poincaré Extension
Poincaré is a French surname. Notable people with the surname include: * Henri Poincaré (1854–1912), French physicist, mathematician and philosopher of science * Henriette Poincaré (1858–1943), wife of Prime Minister Raymond Poincaré * Lucien Poincaré (1862–1920), physicist, brother of Raymond and cousin of Henri * Raymond Poincaré (1860–1934), French Prime Minister or President ''inter alia'' from 1913 to 1920, cousin of Henri See also *List of things named after Henri Poincaré In physics and mathematics, a number of ideas are named after Henri Poincaré: * Euler–Poincaré characteristic * Hilbert–Poincaré series * Poincaré–Bendixson theorem * Poincaré–Birkhoff theorem * Poincaré–Birkhoff–Witt theorem, ... * {{DEFAULTSORT:Poincare French-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Map
In mathematics, a conformal map is a function (mathematics), function that locally preserves angles, but not necessarily lengths. More formally, let U and V be open subsets of \mathbb^n. A function f:U\to V is called conformal (or angle-preserving) at a point u_0\in U if it preserves angles between directed curves through u_0, as well as preserving orientation. Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or curvature. The conformal property may be described in terms of the Jacobian matrix and determinant, Jacobian derivative matrix of a coordinate transformation. The transformation is conformal whenever the Jacobian at each point is a positive scalar times a rotation matrix (Orthogonal matrix, orthogonal with determinant one). Some authors define conformality to include orientation-reversing mappings whose Jacobians can be written as any scalar times any orthogonal matrix. For mappings in two dimensions, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ball Model
A ball is a round object (usually sphere, spherical, but sometimes ovoid) with several uses. It is used in ball games, where the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Balls can also be used for simpler activities, such as catch or juggling. Balls made from hard-wearing materials are used in engineering applications to provide very low friction bearings, known as ball bearings. Black powder, Black-powder weapons use stone and metal balls as projectiles. Although many types of balls are today made from rubber, this form was unknown outside the Americas until after the voyages of Christopher Columbus, Columbus. The Spanish were the first Europeans to see the bouncing rubber balls (although solid and not inflated) which were employed most notably in the Mesoamerican ballgame. Balls used in various sports in other parts of the world prior to Columbus were made from other materials such as animal bladders or skins, stuffed with var ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic 3-space
In mathematics, hyperbolic space of dimension ''n'' is the unique simply connected, ''n''-dimensional Riemannian manifold of constant sectional curvature equal to −1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of \mathbb R^n with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane. It is also sometimes referred to as Lobachevsky space or Bolyai–Lobachevsky space after the names of the author who first published on the topic of hyperbolic geometry. Sometimes the qualificative "real" is added to distinguish it from complex hyperbolic spaces. Hyperbolic space serves as the prototype of a Gromov hyperbolic space, which is a far-reaching notion including differential-geometric as well as more combinatorial spaces via a synthetic approach to negativ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hyperbolic Isometry
Hyperbolic may refer to: * of or pertaining to a hyperbola, a type of smooth curve lying in a plane in mathematics ** Hyperbolic geometry, a non-Euclidean geometry ** Hyperbolic functions, analogues of ordinary trigonometric functions, defined using the hyperbola * of or pertaining to hyperbole, the use of exaggeration as a rhetorical device or figure of speech * ''Hyperbolic'' (album), by Pnau, 2024 See also * Exaggeration * Hyperboloid In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by def ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discrete Group
In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and only if its identity is isolated. A subgroup ''H'' of a topological group ''G'' is a discrete subgroup if ''H'' is discrete when endowed with the subspace topology from ''G''. In other words there is a neighbourhood of the identity in ''G'' containing no other element of ''H''. For example, the integers, Z, form a discrete subgroup of the reals, R (with the standard metric topology), but the rational numbers, Q, do not. Any group can be endowed with the discrete topology, making it a discrete topological group. Since every map from a discrete space is continuous, the topological homomorphisms between discrete groups are exactly the group homomorphisms between the underlying groups. Hence, there is an isomorphism between the catego ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]