Coupled Pattern Learner
Coupled Pattern Learner (CPL) is a machine learning algorithm which couples the semi-supervised learning of categories and relations to forestall the problem of semantic drift associated with boot-strap learning methods. Coupled Pattern Learner Semi-supervised learning approaches using a small number of labeled examples with many unlabeled examples are usually unreliable as they produce an internally consistent, but incorrect set of extractions. CPL solves this problem by simultaneously learning classifiers for many different categories and relations in the presence of an ontology defining constraints that couple the training of these classifiers. It was introduced by Andrew Carlson, Justin Betteridge, Estevam R. Hruschka Jr. and Tom M. Mitchell in 2009. CPL overview CPL is an approach to semi-supervised learning that yields more accurate results by coupling the training of many information extractors. Basic idea behind CPL is that semi-supervised training of a single type ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Machine Learning
Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F.,Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning IEEE Transactions on Vehicular Technology, 2020. A subset of machine learning is closely related to computational statistics, which focuses on making predicti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semi-supervised Learning
Weak supervision is a branch of machine learning where noisy, limited, or imprecise sources are used to provide supervision signal for labeling large amounts of training data in a supervised learning setting. This approach alleviates the burden of obtaining hand-labeled data sets, which can be costly or impractical. Instead, inexpensive weak labels are employed with the understanding that they are imperfect, but can nonetheless be used to create a strong predictive model. Problem of labeled training data Machine learning models and techniques are increasingly accessible to researchers and developers; the real-world usefulness of these models, however, depends on access to high-quality labeled training data. This need for labeled training data often proves to be a significant obstacle to the application of machine learning models within an organization or industry. This bottleneck effect manifests itself in various ways, including the following examples: Insufficient quantity of la ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semi-supervised Learning
Weak supervision is a branch of machine learning where noisy, limited, or imprecise sources are used to provide supervision signal for labeling large amounts of training data in a supervised learning setting. This approach alleviates the burden of obtaining hand-labeled data sets, which can be costly or impractical. Instead, inexpensive weak labels are employed with the understanding that they are imperfect, but can nonetheless be used to create a strong predictive model. Problem of labeled training data Machine learning models and techniques are increasingly accessible to researchers and developers; the real-world usefulness of these models, however, depends on access to high-quality labeled training data. This need for labeled training data often proves to be a significant obstacle to the application of machine learning models within an organization or industry. This bottleneck effect manifests itself in various ways, including the following examples: Insufficient quantity of la ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ontology (information Science)
In computer science and information science, an ontology encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains of discourse. More simply, an ontology is a way of showing the properties of a subject area and how they are related, by defining a set of concepts and categories that represent the subject. Every academic discipline or field creates ontologies to limit complexity and organize data into information and knowledge. Each uses ontological assumptions to frame explicit theories, research and applications. New ontologies may improve problem solving within that domain. Translating research papers within every field is a problem made easier when experts from different countries maintain a controlled vocabulary of jargon between each of their languages. For instance, the definition and ontology of economics is a primary concern in Marxist econo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Learning
Learning is the process of acquiring new understanding, knowledge, behaviors, skills, value (personal and cultural), values, attitudes, and preferences. The ability to learn is possessed by humans, animals, and some machine learning, machines; there is also evidence for some kind of learning in certain plants. Some learning is immediate, induced by a single event (e.g. being burned by a Heat, hot stove), but much skill and knowledge accumulate from repeated experiences. The changes induced by learning often last a lifetime, and it is hard to distinguish learned material that seems to be "lost" from that which cannot be retrieved. Human learning starts at birth (it might even start before in terms of an embryo's need for both interaction with, and freedom within its environment within the womb.) and continues until death as a consequence of ongoing interactions between people and their environment. The nature and processes involved in learning are studied in many established fi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mutually Exclusive
In logic and probability theory, two events (or propositions) are mutually exclusive or disjoint if they cannot both occur at the same time. A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails, but not both. In the coin-tossing example, both outcomes are, in theory, collectively exhaustive, which means that at least one of the outcomes must happen, so these two possibilities together exhaust all the possibilities. However, not all mutually exclusive events are collectively exhaustive. For example, the outcomes 1 and 4 of a single roll of a six-sided die are mutually exclusive (both cannot happen at the same time) but not collectively exhaustive (there are other possible outcomes; 2,3,5,6). Logic In logic, two mutually exclusive propositions are propositions that logically cannot be true in the same sense at the same time. To say that more than two propositions are mutually exclusive, depending on the context, means that one ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Text Corpus
In linguistics, a corpus (plural ''corpora'') or text corpus is a language resource consisting of a large and structured set of texts (nowadays usually electronically stored and processed). In corpus linguistics, they are used to do statistical analysis and statistical hypothesis testing, hypothesis testing, checking occurrences or validating linguistic rules within a specific language territory. In Search engine (computing), search technology, a corpus is the collection of documents which is being searched. Overview A corpus may contain texts in a single language (''monolingual corpus'') or text data in multiple languages (''multilingual corpus''). In order to make the corpora more useful for doing linguistic research, they are often subjected to a process known as annotation. An example of annotating a corpus is part-of-speech tagging, or ''POS-tagging'', in which information about each word's part of speech (verb, noun, adjective, etc.) is added to the corpus in the form o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Co-training
Co-training is a machine learning algorithm used when there are only small amounts of labeled data and large amounts of unlabeled data. One of its uses is in text mining for search engines. It was introduced by Avrim Blum and Tom Mitchell in 1998. Algorithm design Co-training is a semi-supervised learning technique that requires two ''views'' of the data. It assumes that each example is described using two different sets of features that provide complementary information about the instance. Ideally, the two views are conditionally independent (i.e., the two feature sets of each instance are conditionally independent given the class) and each view is sufficient (i.e., the class of an instance can be accurately predicted from each view alone). Co-training first learns a separate classifier for each view using any labeled examples. The most confident predictions of each classifier on the unlabeled data are then used to iteratively construct additional labeled training data. The origi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Never-Ending Language Learning
Never-Ending Language Learning system (NELL) is a semantic machine learning system developed by a research team at Carnegie Mellon University, and supported by grants from DARPA, Google, NSF, and CNPq with portions of the system running on a supercomputing cluster provided by Yahoo!. Process and goals NELL was programmed by its developers to be able to identify a basic set of fundamental semantic relationships between a few hundred predefined categories of data, such as cities, companies, emotions and sports teams. Since the beginning of 2010, the Carnegie Mellon research team has been running NELL around the clock, sifting through hundreds of millions of web pages looking for connections between the information it already knows and what it finds through its search process – to make new connections in a manner that is intended to mimic the way humans learn new information. For example, in encountering the word pair "Pikes Peak", NELL would notice that both words are capitalize ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |