Conway Group Co2
In the area of modern algebra known as group theory, the Conway group ''Co2'' is a sporadic simple group of order : 218365371123 : = 42305421312000 : ≈ 4. History and properties ''Co2'' is one of the 26 sporadic groups and was discovered by as the group of automorphisms of the Leech lattice Λ fixing a lattice vector of type 2. It is thus a subgroup of Co0. It is isomorphic to a subgroup of Co1. The direct product 2×Co2 is maximal in Co0. The Schur multiplier and the outer automorphism group In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has a t ... are both Trivial group, trivial. Representations Co2 acts as a rank 3 permutation group on 2300 points. These points can be identified with planar hexagons in the Leech lattice having 6 type 2 vertices. Co2 act ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathieu Group M22
In the area of modern algebra known as group theory, the Mathieu group ''M22'' is a sporadic simple group of Order (group theory), order : 27325711 = 443520 : ≈ 4. History and properties ''M22'' is one of the 26 sporadic groups and was introduced by . It is a 3-fold transitive permutation group on 22 objects. The Schur multiplier of M22 is cyclic of order 12, and the outer automorphism group has order 2. There are several incorrect statements about the 2-part of the Schur multiplier in the mathematical literature. incorrectly claimed that the Schur multiplier of M22 has order 3, and in a correction incorrectly claimed that it has order 6. This caused an error in the title of the paper announcing the discovery of the Janko group J4. showed that the Schur multiplier is in fact cyclic of order 12. calculated the 2-part of all the cohomology of M22. Representations M22 has a 3-transitive permutation representation on 22 points, with point stabilizer th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Algebra
''Journal of Algebra'' (ISSN 0021-8693) is an international mathematical research journal in algebra. An imprint of Academic Press, it is published by Elsevier. ''Journal of Algebra'' was founded by Graham Higman, who was its editor from 1964 to 1984. From 1985 until 2000, Walter Feit served as its editor-in-chief. In 2004, ''Journal of Algebra'' announced (vol. 276, no. 1 and 2) the creation of a new section on computational algebra, with a separate editorial board. The first issue completely devoted to computational algebra was vol. 292, no. 1 (October 2005). The Editor-in-Chief of the ''Journal of Algebra'' is Michel Broué, Université Paris Diderot, and Gerhard Hiß, Rheinisch-Westfälische Technische Hochschule Aachen ( RWTH) is Editor of the computational algebra section. See also *Susan Montgomery M. Susan Montgomery (born 2 April 1943 in Lansing, MI) is a distinguished American mathematician whose current research interests concern noncommutative algebras: in parti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oxford University Press
Oxford University Press (OUP) is the university press of the University of Oxford. It is the largest university press in the world, and its printing history dates back to the 1480s. Having been officially granted the legal right to print books by decree in 1586, it is the second oldest university press after Cambridge University Press. It is a department of the University of Oxford and is governed by a group of 15 academics known as the Delegates of the Press, who are appointed by the vice-chancellor of the University of Oxford. The Delegates of the Press are led by the Secretary to the Delegates, who serves as OUP's chief executive and as its major representative on other university bodies. Oxford University Press has had a similar governance structure since the 17th century. The press is located on Walton Street, Oxford, opposite Somerville College, in the inner suburb of Jericho. For the last 500 years, OUP has primarily focused on the publication of pedagogical texts and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Association Of America
The Mathematical Association of America (MAA) is a professional society that focuses on mathematics accessible at the undergraduate level. Members include university, college, and high school teachers; graduate and undergraduate students; pure and applied mathematicians; computer scientists; statisticians; and many others in academia, government, business, and industry. The MAA was founded in 1915 and is headquartered at 1529 18th Street, Northwest in the Dupont Circle neighborhood of Washington, D.C. The organization publishes mathematics journals and books, including the '' American Mathematical Monthly'' (established in 1894 by Benjamin Finkel), the most widely read mathematics journal in the world according to records on JSTOR. Mission and Vision The mission of the MAA is to advance the understanding of mathematics and its impact on our world. We envision a society that values the power and beauty of mathematics and fully realizes its potential to promote human flourishing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Academic Press
Academic Press (AP) is an academic book publisher founded in 1941. It was acquired by Harcourt, Brace & World in 1969. Reed Elsevier bought Harcourt in 2000, and Academic Press is now an imprint of Elsevier. Academic Press publishes reference books, serials and online products in the subject areas of: * Communications engineering * Economics * Environmental science * Finance * Food science and nutrition * Geophysics * Life sciences * Mathematics and statistics * Neuroscience * Physical sciences * Psychology Well-known products include the ''Methods in Enzymology'' series and encyclopedias such as ''The International Encyclopedia of Public Health'' and the ''Encyclopedia of Neuroscience''. See also * Akademische Verlagsgesellschaft (AVG) — the German predecessor, founded in 1906 by Leo Jolowicz (1868–1940), the father of Walter Jolowicz Walter may refer to: People * Walter (name), both a surname and a given name * Little Walter, American blues harmonica player Marion Wa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proceedings Of The National Academy Of Sciences
''Proceedings of the National Academy of Sciences of the United States of America'' (often abbreviated ''PNAS'' or ''PNAS USA'') is a peer-reviewed multidisciplinary scientific journal. It is the official journal of the National Academy of Sciences, published since 1915, and publishes original research, scientific reviews, commentaries, and letters. According to ''Journal Citation Reports'', the journal has a 2021 impact factor of 12.779. ''PNAS'' is the second most cited scientific journal, with more than 1.9 million cumulative citations from 2008 to 2018. In the mass media, ''PNAS'' has been described variously as "prestigious", "sedate", "renowned" and "high impact". ''PNAS'' is a delayed open access journal, with an embargo period of six months that can be bypassed for an author fee ( hybrid open access). Since September 2017, open access articles are published under a Creative Commons license. Since January 2019, ''PNAS'' has been online-only, although print issues are a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathieu Group M23
In the area of modern algebra known as group theory, the Mathieu group ''M''23 is a sporadic simple group of order : 2732571123 = 10200960 : ≈ 1 × 107. History and properties ''M''23 is one of the 26 sporadic groups and was introduced by . It is a 4-fold transitive permutation group on 23 objects. The Schur multiplier and the outer automorphism group are both trivial. calculated the integral cohomology, and showed in particular that M23 has the unusual property that the first 4 integral homology groups all vanish. The inverse Galois problem seems to be unsolved for M23. In other words, no polynomial in Z 'x''seems to be known to have M23 as its Galois group. The inverse Galois problem is solved for all other sporadic simple groups. Construction using finite fields Let be the finite field with 211 elements. Its group of units has order − 1 = 2047 = 23 · 89, so it has a cyclic subgroup of order 23. The Mathieu group M23 can be identified with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Higman–Sims Group
In the area of modern algebra known as group theory, the Higman–Sims group HS is a sporadic simple group of order : 29⋅32⋅53⋅7⋅11 = 44352000 : ≈ 4. The Schur multiplier has order 2, the outer automorphism group has order 2, and the group 2.HS.2 appears as an involution centralizer in the Harada–Norton group. History HS is one of the 26 sporadic groups and was found by . They were attending a presentation by Marshall Hall on the Hall–Janko group J2. It happens that J2 acts as a permutation group on the Hall–Janko graph of 100 points, the stabilizer of one point being a subgroup with two other orbits of lengths 36 and 63. Inspired by this they decided to check for other rank 3 permutation groups on 100 points. They soon focused on a possible one containing the Mathieu group M22, which has permutation representations on 22 and 77 points. (The latter representation arises because the M22 Steiner system has 77 blocks.) By putting toge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
McLaughlin Sporadic Group
In the area of modern algebra known as group theory, the McLaughlin group McL is a sporadic simple group of order : 27 ⋅ 36 ⋅ 53 ⋅ 7 ⋅ 11 = 898,128,000 : ≈ 9. History and properties McL is one of the 26 sporadic groups and was discovered by as an index 2 subgroup of a rank 3 permutation group acting on the McLaughlin graph with vertices. It fixes a 2-2-3 triangle in the Leech lattice and thus is a subgroup of the Conway groups \mathrm_0, \mathrm_2, and \mathrm_3. Its Schur multiplier has order 3, and its outer automorphism group has order 2. The group 3.McL:2 is a maximal subgroup of the Lyons group. McL has one conjugacy class of involution (element of order 2), whose centralizer is a maximal subgroup of type 2.A8. This has a center of order 2; the quotient modulo the center is isomorphic to the alternating group A8. Representations In the Conway group Co3, McL has the normalizer McL:2, which is maximal in Co3. McL has 2 cl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fischer Group
In the area of modern algebra known as group theory, the Fischer groups are the three sporadic simple groups Fi22, Fi23 and Fi24 introduced by . 3-transposition groups The Fischer groups are named after Bernd Fischer who discovered them while investigating 3-transposition groups. These are groups ''G'' with the following properties: * ''G'' is generated by a conjugacy class of elements of order 2, called 'Fischer transpositions' or 3-transpositions. * The product of any two distinct transpositions has order 2 or 3. The typical example of a 3-transposition group is a symmetric group, where the Fischer transpositions are genuinely transpositions. The symmetric group Sn can be generated by transpositions: (12), (23), ..., . Fischer was able to classify 3-transposition groups that satisfy certain extra technical conditions. The groups he found fell mostly into several infinite classes (besides symmetric groups: certain classes of symplectic, unitary, and orthogonal groups ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |