HOME
*





Convergence Proof Techniques
Convergence proof techniques are canonical components of mathematical proofs that limit of a sequence, sequences or limit of a function, functions converge to a finite limit (mathematics), limit when the argument tends to infinity. There are many types of series and Modes of convergence (annotated index), modes of convergence requiring different techniques. Below are some of the more common examples. This article is intended as an introduction aimed to help practitioners explore appropriate techniques. The links below give details of necessary conditions and generalizations to more abstract settings. The convergence of series is already covered in the article on convergence tests. Convergence in R''n'' It is common to want to prove convergence of a sequence f:\mathbb\rightarrow \mathbb^n or function f:\mathbb\rightarrow \mathbb^n, where \mathbb and \mathbb refer to the natural numbers and the real numbers, and convergence is with respect to the Euclidean norm, , , \cdot, , _2. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit Of A Sequence
As the positive integer n becomes larger and larger, the value n\cdot \sin\left(\tfrac1\right) becomes arbitrarily close to 1. We say that "the limit of the sequence n\cdot \sin\left(\tfrac1\right) equals 1." In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the \lim symbol (e.g., \lim_a_n).Courant (1961), p. 29. If such a limit exists, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests. Limits can be defined in any metric or topological space, but are usually first encountered in the real numbers. History The Greek philosopher Zeno of Elea is famous for formulating paradoxes that involve limiting processes. Leucippus, Democritus, Antiphon, Eudoxus, and Archimedes developed the method of exhaustion, which uses an infinite sequence of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bolzano–Weierstrass Theorem
In mathematics, specifically in real analysis, the Bolzano–Weierstrass theorem, named after Bernard Bolzano and Karl Weierstrass, is a fundamental result about convergence in a finite-dimensional Euclidean space \R^n. The theorem states that each infinite bounded sequence in \R^n has a limit of a sequence, convergent subsequence. An equivalent formulation is that a subset of \R^n is Sequentially compact space, sequentially compact if and only if it is closed set, closed and bounded set, bounded. The theorem is sometimes called the sequential compactness theorem. History and significance The Bolzano–Weierstrass theorem is named after mathematicians Bernard Bolzano and Karl Weierstrass. It was actually first proved by Bolzano in 1817 as a Lemma (mathematics), lemma in the proof of the intermediate value theorem. Some fifty years later the result was identified as significant in its own right, and proved again by Weierstrass. It has since become an essential theorem of Real ana ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergence Of Random Variables
In probability theory, there exist several different notions of convergence of random variables. The convergence of sequences of random variables to some limit random variable is an important concept in probability theory, and its applications to statistics and stochastic processes. The same concepts are known in more general mathematics as stochastic convergence and they formalize the idea that a sequence of essentially random or unpredictable events can sometimes be expected to settle down into a behavior that is essentially unchanging when items far enough into the sequence are studied. The different possible notions of convergence relate to how such a behavior can be characterized: two readily understood behaviors are that the sequence eventually takes a constant value, and that values in the sequence continue to change but can be described by an unchanging probability distribution. Background "Stochastic convergence" formalizes the idea that a sequence of essentially rando ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Wesley
John Wesley (; 2 March 1791) was an English people, English cleric, Christian theology, theologian, and Evangelism, evangelist who was a leader of a Christian revival, revival movement within the Church of England known as Methodism. The societies he founded became the dominant form of the independent Methodist movement that continues to this day. Educated at Charterhouse School, Charterhouse and Christ Church, Oxford, Wesley was elected a fellow of Lincoln College, Oxford, in 1726 and ordination, ordained as an Anglican priest two years later. At Oxford, he led the "Holy Club", a society formed for the purpose of the study and the pursuit of a devout Christian life; it had been founded by his brother Charles Wesley, Charles and counted George Whitefield among its members. After an unsuccessful ministry of two years, serving at Christ Church (Savannah, Georgia), Christ Church, in the Georgia colony of Savannah, Georgia, Savannah, he returned to London and joined a religious so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convergence Of Fourier Series
In mathematics, the question of whether the Fourier series of a periodic function convergent series, converges to a given function (mathematics), function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily given in the general case, and certain criteria must be met for convergence to occur. Determination of convergence requires the comprehension of pointwise convergence, uniform convergence, absolute convergence, Lp space, ''L''''p'' spaces, summability methods and the Cesàro mean. Preliminaries Consider ''f'' an Lebesgue integration, integrable function on the interval . For such an ''f'' the Fourier coefficients \widehat(n) are defined by the formula :\widehat(n)=\frac\int_0^f(t)e^\,\mathrmt, \quad n \in \Z. It is common to describe the connection between ''f'' and its Fourier series by :f \sim \sum_n \widehat(n) e^. The notation ~ here means that the sum represents the function in some sense. To invest ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform Convergence
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions (f_n) converges uniformly to a limiting function f on a set E if, given any arbitrarily small positive number \epsilon, a number N can be found such that each of the functions f_N, f_,f_,\ldots differs from f by no more than \epsilon ''at every point'' x ''in'' E. Described in an informal way, if f_n converges to f uniformly, then the rate at which f_n(x) approaches f(x) is "uniform" throughout its domain in the following sense: in order to guarantee that f_n(x) falls within a certain distance \epsilon of f(x), we do not need to know the value of x\in E in question — there can be found a single value of N=N(\epsilon) ''independent of x'', such that choosing n\geq N will ensure that f_n(x) is within \epsilon of f(x) ''for all x\in E''. In contrast, pointwise convergence of f_n to f merely guarantees that for any x\in E given ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pointwise Convergence
In mathematics, pointwise convergence is one of Modes of convergence (annotated index), various senses in which a sequence of functions can Limit (mathematics), converge to a particular function. It is weaker than uniform convergence, to which it is often compared. Definition Suppose that X is a set and Y is a topological space, such as the Real number, real or complex numbers or a metric space, for example. A Net (mathematics), net or sequence of Function (mathematics), functions \left(f_n\right) all having the same domain X and codomain Y is said to converge pointwise to a given function f : X \to Y often written as \lim_ f_n = f\ \mbox if (and only if) \lim_ f_n(x) = f(x) \text x \text f. The function f is said to be the pointwise limit function of the \left(f_n\right). Sometimes, authors use the term bounded pointwise convergence when there is a constant C such that \forall n,x,\;, f_n(x), .


Properties

This concept is often contra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergence In The Norm (strong Convergence)
Convergence may refer to: Arts and media Literature *''Convergence'' (book series), edited by Ruth Nanda Anshen * "Convergence" (comics), two separate story lines published by DC Comics: **A four-part crossover storyline that united the four Weirdoverse titles in 1997 **A 2015 crossover storyline spanning the DC Comics Multiverse * ''Convergence'' (journal), an academic journal that covers the fields of communications and media * ''Convergence'' (novel), by Charles Sheffield * ''Convergence'' (Cherryh novel), by C. J. Cherryh Music * ''Convergence'' (Front Line Assembly album), 1988 * ''Convergence'' (David Arkenstone and David Lanz album), 1996 * ''Convergence'' (Dave Douglas album), 1999 * ''Convergence'' (Warren Wolf album), 2016 Other media * ''Convergence'' (2015 film), an American horror-thriller film * ''Convergence'' (2019 film), a British drama film *''Convergence'', a 2021 Netflix film by Orlando von Einsiedel * ''Convergence'' (Pollock), a 1952 oil painting by Jackson ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematics Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in inc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LaSalle's Invariance Principle
LaSalle's invariance principle (also known as the invariance principle, Barbashin-Krasovskii-LaSalle principle, or Krasovskii-LaSalle principle) is a criterion for the asymptotic stability of an autonomous (possibly nonlinear) dynamical system. Global version Suppose a system is represented as : \dot = f \left(\mathbf x \right) where \mathbf x is the vector of variables, with : f \left( \mathbf 0 \right) = \mathbf 0. If a C^1(see Smoothness) function V(\mathbf x) can be found such that : \dot(\mathbf x) \le 0 for all \mathbf x (negative semidefinite), then the set of accumulation points of any trajectory is contained in where is the union of complete trajectories contained entirely in the set \. If we additionally have that the function V is positive definite, i.e. : V( \mathbf x) > 0 , for all \mathbf x \neq \mathbf 0 : V( \mathbf 0) = 0 and if contains no trajectory of the system except the trivial trajectory \mathbf x(t) = \mathbf 0 for t \geq 0, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Delay Differential Equation
In mathematics, delay differential equations (DDEs) are a type of differential equation in which the derivative of the unknown function at a certain time is given in terms of the values of the function at previous times. DDEs are also called time-delay systems, systems with aftereffect or dead-time, hereditary systems, equations with deviating argument, or differential-difference equations. They belong to the class of systems with the functional state, i.e. partial differential equations (PDEs) which are infinite dimensional, as opposed to ordinary differential equations (ODEs) having a finite dimensional state vector. Four points may give a possible explanation of the popularity of DDEs: # Aftereffect is an applied problem: it is well known that, together with the increasing expectations of dynamic performances, engineers need their models to behave more like the real process. Many processes include aftereffect phenomena in their inner dynamics. In addition, actuators, sensors, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]