HOME
*





Conditional Quantifier
In logic, a conditional quantifier is a kind of Lindström quantifier (or generalized quantifier) ''Q''''A'' that, relative to a classical model ''A'', satisfies some or all of the following conditions ("''X''" and "''Y''" range over arbitrary formulas in one free variable): {, , - , , , , , ''Q''''A'' ''X'' ''X'' , , eflexivity, - , align="right" , ''Q''''A'' ''X'' ''Y'' , , ⇒ , , ''Q''''A'' ''X'' (''Y''∧''X'') , , ight conservativity, - , align="right" , ''Q''''A'' ''X'' (''Y''∧''X'') , , ⇒ , , ''Q''''A'' ''X'' ''Y'' , , eft conservativity, - , align="right" , ''Q''''A'' ''X'' ''Y'' , , ⇒ , , ''Q''''A'' ''X'' (''Y''∨''Z'') , , ositive confirmation, - , align="right" , ''Q''''A'' ''X'' (''Y''∧''Z'') , , ⇒ , , ''Q''''A'' (''X''∧''Y'') ''Z'' , - , align="right" , ''Q''''A'' ''X'' ''Y'' , , ⇒ , , ''Q''''A'' (''X''∨''Z'') (''Y''∨''Z'') , , ositive and negative confirmation, - ,   , - , align="right" , ''Q''''A'' ''X'' ''Y' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies, critical thinking, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied arguments are expressed in formal or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises together with a conclusion. Premises and conclusions are usually un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lindström Quantifier
In mathematical logic, a Lindström quantifier is a generalized polyadic quantifier. Lindström quantifiers generalize first-order quantifiers, such as the existential quantifier, the universal quantifier, and the counting quantifiers. They were introduced by Per Lindström in 1966. They were later studied for their applications in logic in computer science and database query languages. Generalization of first-order quantifiers In order to facilitate discussion, some notational conventions need explaining. The expression : \phi^=\ for ''A'' an ''L''-structure (or ''L''-model) in a language ''L'', ''φ'' an ''L''-formula, and \bar a tuple of elements of the domain dom(''A'') of ''A''. In other words, \phi^ denotes a ( monadic) property defined on dom(A). In general, where ''x'' is replaced by an ''n''-tuple \bar of free variables, \phi^ denotes an ''n''-ary relation defined on dom(''A''). Each quantifier Q_A is relativized to a structure, since each quantifier is viewed a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Quantifier
In formal semantics, a generalized quantifier (GQ) is an expression that denotes a set of sets. This is the standard semantics assigned to quantified noun phrases. For example, the generalized quantifier ''every boy'' denotes the set of sets of which every boy is a member: \ This treatment of quantifiers has been essential in achieving a compositional semantics for sentences containing quantifiers. Type theory A version of type theory is often used to make the semantics of different kinds of expressions explicit. The standard construction defines the set of types recursively as follows: #''e'' and ''t'' are types. #If ''a'' and ''b'' are both types, then so is \langle a,b\rangle #Nothing is a type, except what can be constructed on the basis of lines 1 and 2 above. Given this definition, we have the simple types ''e'' and ''t'', but also a countable infinity of complex types, some of which include: \langle e,t\rangle;\qquad \langle t,t\rangle;\qquad \langle\langle e,t\rangle, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Variable
In mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a free variable is a notation (symbol) that specifies places in an expression where substitution may take place and is not a parameter of this or any container expression. Some older books use the terms real variable and apparent variable for free variable and bound variable, respectively. The idea is related to a placeholder (a symbol that will later be replaced by some value), or a wildcard character that stands for an unspecified symbol. In computer programming, the term free variable refers to variables used in a function that are neither local variables nor parameters of that function. The term non-local variable is often a synonym in this context. A bound variable, in contrast, is a variable that has been ''bound'' to a specific value or range of values in the domain of discourse or universe. This may be achieved through the use of logical quantifiers, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Connective
In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. They can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective \lor can be used to join the two atomic formulas P and Q, rendering the complex formula P \lor Q . Common connectives include negation, disjunction, conjunction, and implication. In standard systems of classical logic, these connectives are interpreted as truth functions, though they receive a variety of alternative interpretations in nonclassical logics. Their classical interpretations are similar to the meanings of natural language expressions such as English "not", "or", "and", and "if", but not identical. Discrepancies between natural language connectives and those of classical logic have motivated nonclassical approaches to natural language meaning as well as approaches which pair a classical compositional semantics wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paraconsistent Logic
A paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic which reject the principle of explosion. Inconsistency-tolerant logics have been discussed since at least 1910 (and arguably much earlier, for example in the writings of Aristotle); however, the term ''paraconsistent'' ("beside the consistent") was first coined in 1976, by the Peruvian philosopher Francisco Miró Quesada Cantuarias. The study of paraconsistent logic has been dubbed paraconsistency, which encompasses the school of dialetheism. Definition In classical logic (as well as intuitionistic logic and most other logics), contradictions entail everything. This feature, known as the principle of explosion or ''ex contradictione sequitur quodlibet'' (Latin, "from a contradiction, anything follows") can be expressed formal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]