HOME
*



picture info

Chomp
Chomp is a two-player strategy game played on a rectangular grid made up of smaller square cells, which can be thought of as the blocks of a chocolate bar. The players take it in turns to choose one block and "eat it" (remove from the board), together with those that are below it and to its right. The top left block is "poisoned" and the player who eats this loses. The chocolate-bar formulation of Chomp is due to David Gale, but an equivalent game expressed in terms of choosing divisors of a fixed integer was published earlier by Frederik Schuh. Chomp is a special case of a poset game where the partially ordered set on which the game is played is a product of total orders with the minimal element (poisonous block) removed. Example game Below shows the sequence of moves in a typical game starting with a 5 × 4 bar: Player A eats two blocks from the bottom right corner; Player B eats three from the bottom row; Player A picks the block to the right of the poisoned block and e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chomp Game
Chomp is a two-player strategy game played on a rectangular grid made up of smaller square cells, which can be thought of as the blocks of a chocolate bar. The players take it in turns to choose one block and "eat it" (remove from the board), together with those that are below it and to its right. The top left block is "poisoned" and the player who eats this loses. The chocolate-bar formulation of Chomp is due to David Gale, but an equivalent game expressed in terms of choosing divisors of a fixed integer was published earlier by Frederik Schuh. Chomp is a special case of a poset game where the partially ordered set on which the game is played is a product of total orders with the minimal element (poisonous block) removed. Example game Below shows the sequence of moves in a typical game starting with a 5 × 4 bar: Player A eats two blocks from the bottom right corner; Player B eats three from the bottom row; Player A picks the block to the right of the poisoned block and e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Games
A mathematical game is a game whose rules, strategies, and outcomes are defined by clear mathematical parameters. Often, such games have simple rules and match procedures, such as Tic-tac-toe and Dots and Boxes. Generally, mathematical games need not be conceptually intricate to involve deeper computational underpinnings. For example, even though the rules of Mancala are relatively basic, the game can be rigorously analyzed through the lens of combinatorial game theory. Mathematical games differ sharply from mathematical puzzles in that mathematical puzzles require specific mathematical expertise to complete, whereas mathematical games do not require a deep knowledge of mathematics to play. Often, the arithmetic core of mathematical games is not readily apparent to players untrained to note the statistical or mathematical aspects. Some mathematical games are of deep interest in the field of recreational mathematics. When studying a game's core mathematics, arithmetic theory i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frederik Schuh
Frederik Schuh (7 February 1875, Amsterdam – 6 January 1966, The Hague) was a Dutch mathematician. Career He completed his PhD in algebraic geometry from Amsterdam University in 1905, where his advisor was Diederik Johannes Korteweg. He taught at the Technische Hoogeschool at Delft (1907–1909 and 1916–1945) and at Groningen (1909–1916).The Universal Book of Mathematics Works He was the inventor of the Chomp Chomp is a two-player strategy game played on a rectangular grid made up of smaller square cells, which can be thought of as the blocks of a chocolate bar. The players take it in turns to choose one block and "eat it" (remove from the board), tog ... game and wrote ''The Master Book of Mathematical Recreations'' (1943). References External links Mathematics Genealogy 1875 births 1966 deaths 20th-century Dutch mathematicians Game theorists Scientists from Amsterdam University of Amsterdam alumni Academic staff of the Delft University of Technology Ac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Impartial Game
In combinatorial game theory, an impartial game is a game in which the allowable moves depend only on the position and not on which of the two players is currently moving, and where the payoffs are symmetric. In other words, the only difference between player 1 and player 2 is that player 1 goes first. The game is played until a terminal position is reached. A terminal position is one from which no moves are possible. Then one of the players is declared the winner and the other the loser. Furthermore, impartial games are played with perfect information and no chance moves, meaning all information about the game and operations for both players are visible to both players. Impartial games include Nim, Sprouts, Kayles, Quarto, Cram, Chomp, Subtract a square, Notakto, and poset games. Go and chess are not impartial, as each player can only place or move pieces of their own color. Games such as poker, dice or dominos are not impartial games as they rely on chance. Impartial games c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strategy-stealing Argument
In combinatorial game theory, the strategy-stealing argument is a general argument that shows, for many two-player games, that the second player cannot have a guaranteed winning strategy. The strategy-stealing argument applies to any symmetric game (one in which either player has the same set of available moves with the same results, so that the first player can "use" the second player's strategy) in which an extra move can never be a disadvantage. A key property of a strategy stealing argument is that it proves that the first player can win (or possibly draw) the game without actually constructing such a strategy. So, although it might tell you that there exists a winning strategy, the proof gives you no information about what that strategy is. The argument works by obtaining a contradiction. A winning strategy is assumed to exist for the second player, who is using it. But then, roughly speaking, after making an arbitrary first move – which by the conditions above is not a disa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponentiation
Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, is the product of multiplying bases: b^n = \underbrace_. The exponent is usually shown as a superscript to the right of the base. In that case, is called "''b'' raised to the ''n''th power", "''b'' (raised) to the power of ''n''", "the ''n''th power of ''b''", "''b'' to the ''n''th power", or most briefly as "''b'' to the ''n''th". Starting from the basic fact stated above that, for any positive integer n, b^n is n occurrences of b all multiplied by each other, several other properties of exponentiation directly follow. In particular: \begin b^ & = \underbrace_ \\[1ex] & = \underbrace_ \times \underbrace_ \\[1ex] & = b^n \times b^m \end In other words, when multiplying a base raised to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multiple (mathematics)
In mathematics, a multiple is the product of any quantity and an integer. In other words, for the quantities ''a'' and ''b'', it can be said that ''b'' is a multiple of ''a'' if ''b'' = ''na'' for some integer ''n'', which is called the multiplier. If ''a'' is not zero, this is equivalent to saying that b/a is an integer. When ''a'' and ''b'' are both integers, and ''b'' is a multiple of ''a'', then ''a'' is called a divisor of ''b''. One says also that ''a'' divides ''b''. If ''a'' and ''b'' are not integers, mathematicians prefer generally to use integer multiple instead of ''multiple'', for clarification. In fact, ''multiple'' is used for other kinds of product; for example, a polynomial ''p'' is a multiple of another polynomial ''q'' if there exists third polynomial ''r'' such that ''p'' = ''qr''. In some texts, "''a'' is a submultiple of ''b''" has the meaning of "''a'' being a unit fraction of ''b''" or, equivalently, "''b'' being an integer multiple of ''a''". This termino ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Strategy Games
Abstract strategy games admit a number of definitions which distinguish these from strategy games in general, mostly involving no or minimal narrative theme, outcomes determined only by player choice (with no randomness), and perfect information. For example, Go is a pure abstract strategy game since it fulfills all three criteria; chess and related games are nearly so but feature a recognizable theme of ancient warfare; and Stratego is borderline since it is deterministic, loosely based on 19th-century Napoleonic warfare, and features concealed information. Definition Combinatorial games have no randomizers such as dice, no simultaneous movement, nor hidden information. Some games that do have these elements are sometimes classified as abstract strategy games. (Games such as '' Continuo'', Octiles, '' Can't Stop'', and Sequence, could be considered abstract strategy games, despite having a luck or bluffing element.) A smaller category of abstract strategy games manages to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hackenbush
Hackenbush is a two-player game invented by mathematician John Horton Conway. It may be played on any configuration of colored line segments connected to one another by their endpoints and to a "ground" line. Gameplay The game starts with the players drawing a "ground" line (conventionally, but not necessarily, a horizontal line at the bottom of the paper or other playing area) and several line segments such that each line segment is connected to the ground, either directly at an endpoint, or indirectly, via a chain of other segments connected by endpoints. Any number of segments may meet at a point and thus there may be multiple paths to ground. On their turn, a player "cuts" (erases) any line segment of their choice. Every line segment no longer connected to the ground by any path "falls" (i.e., gets erased). According to the normal play convention of combinatorial game theory, the first player who is unable to move loses. Hackenbush boards can consist of finitely many (in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Disjunctive Sum
In the mathematics of combinatorial games, the sum or disjunctive sum of two games is a game in which the two games are played in parallel, with each player being allowed to move in just one of the games per turn. The sum game finishes when there are no moves left in either of the two parallel games, at which point (in normal play) the last player to move wins. This operation may be extended to disjunctive sums of any number of games, again by playing the games in parallel and moving in exactly one of the games per turn. It is the fundamental operation that is used in the Sprague–Grundy theorem for impartial games and which led to the field of combinatorial game theory for partisan games. Application to common games Disjunctive sums arise in games that naturally break up into components or regions that do not interact except in that each player in turn must choose just one component to play in. Examples of such games are Go, Nim, Sprouts, Domineering, the Game of the Amazons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Misère
Misère ( French for "destitution"), misere, bettel, betl, or (German for "beggar"; equivalent terms in other languages include , , ) is a bid in various card games, and the player who bids misère undertakes to win no tricks or as few as possible, usually at no trump, in the round to be played. This does not allow sufficient variety to constitute a game in its own right, but it is the basis of such trick-avoidance games as Hearts, and provides an optional contract for most games involving an auction. The term or category may also be used for some card game of its own with the same aim, like Black Peter. A misère bid usually indicates an extremely poor hand, hence the name. An open or lay down misère, or misère ouvert is a 500 bid where the player is so sure of losing every trick that they undertake to do so with their cards placed face-up on the table. Consequently, 'lay down misère' is Australian gambling slang for a predicted easy victory. In Skat, the bidding can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Least Element
In mathematics, especially in order theory, the greatest element of a subset S of a partially ordered set (poset) is an element of S that is greater than every other element of S. The term least element is defined dually, that is, it is an element of S that is smaller than every other element of S. Definitions Let (P, \leq) be a preordered set and let S \subseteq P. An element g \in P is said to be if g \in S and if it also satisfies: :s \leq g for all s \in S. By using \,\geq\, instead of \,\leq\, in the above definition, the definition of a least element of S is obtained. Explicitly, an element l \in P is said to be if l \in S and if it also satisfies: :l \leq s for all s \in S. If (P, \leq) is even a partially ordered set then S can have at most one greatest element and it can have at most one least element. Whenever a greatest element of S exists and is unique then this element is called greatest element of S. The terminology least element of S is defined simila ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]