Chirped Pulse Amplification
   HOME
*





Chirped Pulse Amplification
Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort pulse, ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The stretching and compression uses devices that ensure that the different color components of the pulse travel different distances. CPA for lasers was introduced by Donna Strickland and Gérard Mourou at the University of Rochester in the mid-1980s, work for which they received the Nobel Prize in Physics in 2018. CPA is the current state-of-the-art technique used by most of the highest-power lasers in the world. Background Before the introduction of CPA in the mid-1980s, the peak power (physics), power of laser pulses was limited because a laser pulse at Irradiance, intensities of gigawatts per square centimeter causes serious damage to the gain medium through nonlinear optics, nonlinear processes such as self-focusing. For example, some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chirped Pulse Amplification
Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort pulse, ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The stretching and compression uses devices that ensure that the different color components of the pulse travel different distances. CPA for lasers was introduced by Donna Strickland and Gérard Mourou at the University of Rochester in the mid-1980s, work for which they received the Nobel Prize in Physics in 2018. CPA is the current state-of-the-art technique used by most of the highest-power lasers in the world. Background Before the introduction of CPA in the mid-1980s, the peak power (physics), power of laser pulses was limited because a laser pulse at Irradiance, intensities of gigawatts per square centimeter causes serious damage to the gain medium through nonlinear optics, nonlinear processes such as self-focusing. For example, some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffraction Grating
In optics, a diffraction grating is an optical component with a periodic structure that diffracts light into several beams travelling in different directions (i.e., different diffraction angles). The emerging coloration is a form of structural coloration. The directions or diffraction angles of these beams depend on the wave (light) incident angle to the diffraction grating, the spacing or distance between adjacent diffracting elements (e.g., parallel slits for a transmission grating) on the grating, and the wavelength of the incident light. The grating acts as a dispersive element. Because of this, diffraction gratings are commonly used in monochromators and spectrometers, but other applications are also possible such as optical encoders for high precision motion control and wavefront measurement. For typical applications, a reflective grating has ridges or ''rulings'' on its surface while a transmissive grating has transmissive or hollow slits on its surface. Such a grati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Femtosecond Pulse Shaping
In optics, femtosecond pulse shaping refers to manipulations with temporal profile of an ultrashort laser pulse. Pulse shaping can be used to shorten/elongate the duration of optical pulse, or to generate complex pulses. Introduction Generation of sequences of ultrashort optical pulses is key in realizing ultra high speed optical networks, Optical Code Division Multiple Access (OCDMA) systems, chemical and biological reaction triggering and monitoring etc. Based on the requirement, pulse shapers may be designed to stretch, compress or produce a train of pulses from a single input pulse. The ability to produce trains of pulses with femtosecond or picosecond separation implies transmission of optical information at very high speeds. In ultrafast laser science pulse shapers are often used as a complement to pulse compressors in order to fine-tune high-order dispersion compensation and achieve transform-limited few-cycle optical pulses. Techniques A pulse shaper may be visualized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AOPDF
An acousto-optic programmable dispersive filter (AOPDF) is a special type of collinear-beam acousto-optic modulator capable of shaping spectral phase and amplitude of ultrashort laser pulses. AOPDF was invented by Pierre Tournois. Typically, quartz crystals are used for the fabrication of the AOPDFs operating in the UV spectral domain, paratellurite crystals are used in the visible and the NIR (up to 4 µm) and calomel in the MIR (3-20 µm). Recently introduced Lithium niobate crystals allow for high-repetition rate operation (> 100 kHz) owing to their high acoustic velocity. The AOPDF is also used for the active control of the carrier-envelope phase of the few-cycle optical pulses and as a part of pulse-measurement schemes. Although sharing a lot in principle of operation with an '' acousto-optic tunable filter'', the AOPDF should not be confused with it, since in the former the tunable parameter is the transfer function and in the latter it is the impulse respo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chirped Mirror
A chirped mirror is a dielectric mirror with chirped spaces—spaces of varying depth designed to reflect varying wavelengths of lights—between the dielectric layers (stack). Chirped mirrors are used in applications like lasers to reflect a wider range of light wavelengths than ordinary dielectric mirrors, or to compensate for the dispersion of wavelengths that can be created by some optical elements. Chirped mirrors are also found in structurally colored biological systems, including the shiny golden and silver color of certain beetles' elytra, e.g. those of the Ruteline genus ''Chrysina''. In these cases, the chirped mirror generates complex color (such as gold or silver) when illuminated by white light by simultaneously reflecting a broad range of monochromatic colors. Simple explanation An ordinary dielectric mirror is made to reflect a single frequency of light. The dielectric mirror is made of transparent materials that are uniformly layered at a depth of 1/4 the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dispersion (optics)
In optics, and by analogy other branches of physics dealing with wave propagation, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency; sometimes the term chromatic dispersion is used for specificity to optics in particular. A medium having this common property may be termed a dispersive medium (plural ''dispersive media''). Although the term is used in the field of optics to describe light and other electromagnetic waves, dispersion in the same sense can apply to any sort of wave motion such as acoustic dispersion in the case of sound and seismic waves, and in gravity waves (ocean waves). Within optics, dispersion is a property of telecommunication signals along transmission lines (such as microwaves in coaxial cable) or the pulses of light in optical fiber. Physically, dispersion translates in a loss of kinetic energy through absorption. In optics, one important and familiar consequence of dispersion is the change in the angle of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Phase Conjugation
Phase conjugation is a physical transformation of a wave field where the resulting field has a reversed propagation direction but keeps its amplitudes and phases. Description It is distinguished from Time Reversal Signal Processing by the fact that phase conjugation uses a holographic or parametric pumping whereas time reversal records and re-emits the signal using transducers. * Holographic pumping makes the incident wave interact with a pump wave of the same frequency and records its amplitude-phase distribution. Then, a second pump wave reads the recorded signal and produces the conjugate wave. All those waves have the same frequency. * In parametric pumping, the parameters of the medium are modulated by the pump wave at double frequency. The interaction of this perturbation with the incident wave will produce the conjugate wave. Both techniques allow an amplification of the conjugate wave compared to the incident wave. As in time reversal, the wave re-emitted by a phase conj ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rayleigh Scattering
Rayleigh scattering ( ), named after the 19th-century British physicist Lord Rayleigh (John William Strutt), is the predominantly elastic scattering of light or other electromagnetic radiation by particles much smaller than the wavelength of the radiation. For light frequencies well below the resonance frequency of the scattering particle (normal dispersion regime), the amount of scattering is inversely proportional to the fourth power of the wavelength. Rayleigh scattering results from the electric polarizability of the particles. The oscillating electric field of a light wave acts on the charges within a particle, causing them to move at the same frequency. The particle, therefore, becomes a small radiating dipole whose radiation we see as scattered light. The particles may be individual atoms or molecules; it can occur when light travels through transparent solids and liquids, but is most prominently seen in gases. Rayleigh scattering of sunlight in Earth's atmospher ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prism (optics)
An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are ''not'' prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides. Not all optical prisms are geometric prisms, and not all geometric prisms would count as an optical prism. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic and fluorite. A dispersive prism can be used to break white light up into its constituent spectral colors (the colors of the rainbow) as described in the following section. Other types of prisms noted below can be used to reflect light, or to split light into components with different polarizations. Types Dispersive ''Dispersive prisms'' are used to break up light into its constituent spectral ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Femtosecond Pulse Shaping
In optics, femtosecond pulse shaping refers to manipulations with temporal profile of an ultrashort laser pulse. Pulse shaping can be used to shorten/elongate the duration of optical pulse, or to generate complex pulses. Introduction Generation of sequences of ultrashort optical pulses is key in realizing ultra high speed optical networks, Optical Code Division Multiple Access (OCDMA) systems, chemical and biological reaction triggering and monitoring etc. Based on the requirement, pulse shapers may be designed to stretch, compress or produce a train of pulses from a single input pulse. The ability to produce trains of pulses with femtosecond or picosecond separation implies transmission of optical information at very high speeds. In ultrafast laser science pulse shapers are often used as a complement to pulse compressors in order to fine-tune high-order dispersion compensation and achieve transform-limited few-cycle optical pulses. Techniques A pulse shaper may be visualized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cpa Stretcher
CPA may refer to: Organizations Political parties and governmental organizations * Christian Peoples Alliance, a political party in the UK * Coalition Provisional Authority, a transitional government of Iraq 2003–04 * Commonwealth Parliamentary Association * Communist Party of America, forerunner of Communist Party USA * Communist Party of Arakan, in Burma * Communist Party of Australia, 1920–1991 ** Communist Party of Australia (1971) * Comprehensive Peace Accord, a 2006 agreement in Nepal * Comprehensive Peace Agreement, a 2005 agreement in Sudan * Comprehensive Performance Assessment, a UK Audit Commission assessment * Comprehensive Plan of Action, a 1989 plan to stop the influx of Indochinese boat people * Congress Party Alliance, a political party in the Republic of China (Taiwan) * Council of Presidential Advisers, in Singapore * Cyprus Ports Authority Other organizations * CPA Australia, a professional accounting body * Canadian Payments Association * Canadian Pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]