Ceva's Theorem
In Euclidean geometry, Ceva's theorem is a theorem about triangles. Given a triangle , let the lines be drawn from the vertices to a common point (not on one of the sides of ), to meet opposite sides at respectively. (The segments are known as cevians.) Then, using signed lengths of segments, :\frac \cdot \frac \cdot \frac = 1. In other words, the length is taken to be positive or negative according to whether is to the left or right of in some fixed orientation of the line. For example, is defined as having positive value when is between and and negative otherwise. Ceva's theorem is a theorem of affine geometry, in the sense that it may be stated and proved without using the concepts of angles, areas, and lengths (except for the ratio of the lengths of two line segments that are collinear). It is therefore true for triangles in any affine plane over any field. A slightly adapted converse is also true: If points are chosen on respectively so that : \frac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Yusuf Al-Mu'taman Ibn Hud
Abu Amir Yusuf ibn Ahmad ibn Hud (; died ), more commonly known as al-Mu'taman, was a mathematician, and also one of the kings of the Taifa of Zaragoza. The name al-Mu'taman is itself a shortening of his full regnal name al-Mu'taman Billah (). Al-Mu'taman was the third king of the Banu Hud dynasty, reigning from 1081 to 1085, at the height of power of Muslim Zaragoza, following the thriving period of his father Ahmad al-Muqtadir. He continued his father's efforts and created around him a court of intellectuals, living in the beautiful palace of Aljafería, nicknamed as "the palace of joy". As king, Al-Mu'taman was a patron of science, philosophy and arts, and was himself a scholar of considerable accomplishment. He knew astrology, philosophy, and especially mathematics, a discipline in which he wrote the most important treatise to come out of the al-Andalus region in the 11th century, the ''Kitab al-Istikmal'' ("Book of Perfection"). Biography and Kingship Yusuf was born on an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Facet (mathematics)
In geometry, a facet is a feature of a polyhedron, polytope, or related geometric structure, generally of dimension one less than the structure itself. More specifically: * In three-dimensional geometry, some authors call a facet of a polyhedron any polygon whose corners are vertices of the polyhedron, including polygons that are not '' faces''. To ''facet'' a polyhedron is to find and join such facets to form the faces of a new polyhedron; this is the reciprocal process to ''stellation'' and may also be applied to higher-dimensional polytopes. * In polyhedral combinatorics and in the general theory of polytopes, a face that has dimension ''n'' − 1 (an (''n'' − 1)-face or hyperface) is called a facet. In this terminology, every facet is a face. * A facet of a simplicial complex is a maximal simplex, that is a simplex that is not a face of another simplex of the complex.. For (boundary complexes of) simplicial polytope In geometry, a simplicial polytope ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Barycentric Coordinates (mathematics)
In geometry, a barycentric coordinate system is a coordinate system in which the location of a point is specified by reference to a simplex (a triangle for points in a plane, a tetrahedron for points in three-dimensional space, etc.). The barycentric coordinates of a point can be interpreted as masses placed at the vertices of the simplex, such that the point is the center of mass (or ''barycenter'') of these masses. These masses can be zero or negative; they are all positive if and only if the point is inside the simplex. Every point has barycentric coordinates, and their sum is never zero. Two tuples of barycentric coordinates specify the same point if and only if they are proportional; that is to say, if one tuple can be obtained by multiplying the elements of the other tuple by the same non-zero number. Therefore, barycentric coordinates are either considered to be defined up to multiplication by a nonzero constant, or normalized for summing to unity. Barycentric coordin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, * a 0-dimensional simplex is a point, * a 1-dimensional simplex is a line segment, * a 2-dimensional simplex is a triangle, * a 3-dimensional simplex is a tetrahedron, and * a 4-dimensional simplex is a 5-cell. Specifically, a -simplex is a -dimensional polytope that is the convex hull of its vertices. More formally, suppose the points u_0, \dots, u_k are affinely independent, which means that the vectors u_1 - u_0,\dots, u_k-u_0 are linearly independent. Then, the simplex determined by them is the set of points C = \left\. A regular simplex is a simplex that is also a regular polytope. A regular -simplex may be constructed from a regular -simplex by connecting a new vertex to all original vertices by the common ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plane (geometry)
In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement. A Euclidean plane with a chosen Cartesian coordinate system is called a '' Cartesian plane''. The set \mathbb^2 of the ordered pairs of real numbers (the real coordinate plane), equipped with the dot product, is often called ''the'' Euclidean plane or ''standard Euclidean plane'', since every Euclidean plane is isomorphic to it. History Books I through IV and VI of Euclid's Elements dealt with two-dimensional geometry, developing such notions as similarity of shapes, the Pythagorean theorem (Proposition 47), equality of angles and areas, parallelism, the sum of the angles ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Menelaus's Theorem
In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle , and a transversal line that crosses at points respectively, with distinct from . A weak version of the theorem states that \left, \frac\ \times \left, \frac\ \times \left, \frac\ = 1, where ", , " denotes absolute value (i.e., all segment lengths are positive). The theorem can be strengthened to a statement about signed lengths of segments, which provides some additional information about the relative order of collinear points. Here, the length is taken to be positive or negative according to whether is to the left or right of in some fixed orientation of the line; for example, \tfrac is defined as having positive value when is between and and negative otherwise. The signed version of Menelaus's theorem states \frac \times \frac \times \frac = - 1. Equivalently, \overline \times \overline \times \overline = ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Left-hand Side
In mathematics, LHS is informal shorthand for the left-hand side of an equation. Similarly, RHS is the right-hand side. The two sides have the same value, expressed differently, since equality is symmetric. definition and example of abbreviation More generally, these terms may apply to an or inequality; the right-hand side is everything on the right side of a test operator in an [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector (geometry)
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space. A '' vector quantity'' is a vector-valued physical quantity, including units of measurement and possibly a support, formulated as a '' directed line segment''. A vector is frequently depicted graphically as an arrow connecting an ''initial point'' ''A'' with a ''terminal point'' ''B'', and denoted by \stackrel \longrightarrow. A vector is what is needed to "carry" the point ''A'' to the point ''B''; the Latin word means 'carrier'. It was first used by 18th century astronomers investigating planetary revolution around the Sun. The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from ''A'' to ''B''. Many algebraic operations on real numbe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affine Space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. Affine space is the setting for affine geometry. As in Euclidean space, the fundamental objects in an affine space are called '' points'', which can be thought of as locations in the space without any size or shape: zero-dimensional. Through any pair of points an infinite straight line can be drawn, a one-dimensional set of points; through any three points that are not collinear, a two-dimensional plane can be drawn; and, in general, through points in general position, a -dimensional flat or affine subspace can be drawn. Affine space is characterized by a notion of pairs of parallel lines that lie within the same plane but never meet each-other (non-parallel lines wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alfred S
Alfred may refer to: Arts and entertainment *''Alfred J. Kwak'', Dutch-German-Japanese anime television series *Alfred (Arne opera), ''Alfred'' (Arne opera), a 1740 masque by Thomas Arne *Alfred (Dvořák), ''Alfred'' (Dvořák), an 1870 opera by Antonín Dvořák *"Alfred (Interlude)" and "Alfred (Outro)", songs by Eminem from the 2020 album ''Music to Be Murdered By'' Business and organisations * Alfred, a radio station in Shaftesbury, England *Alfred Music, an American music publisher *Alfred University, New York, U.S. *The Alfred Hospital, a hospital in Melbourne, Australia People * Alfred (name) includes a list of people and fictional characters called Alfred * Alfred the Great (848/49 – 899), or Alfred I, a king of the West Saxons and of the Anglo-Saxons Places Antarctica * Mount Alfred (Antarctica) Australia * Alfredtown, New South Wales * County of Alfred, South Australia Canada * Alfred and Plantagenet, Ontario ** Alfred, Ontario, a community in Alfred and Plantag ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Duality (projective Geometry)
In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by Point (geometry), points and Line (geometry), lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one through language () and the other a more functional approach through special Map (mathematics), mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a ''duality''. Such a map can be constructed in many ways. The concept of plane duality readily extends to ''space duality'' and beyond that to duality in any finite-dimensional projective geometry. Principle of duality A projective plane may be defined axiomatically as an incidence structure, in terms of a set of ''points'', a set of ''lines'', and an incidence relation that de ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |