Cayley–Menger Determinant
In linear algebra, geometry, and trigonometry, the Cayley–Menger determinant is a formula for the content, i.e. the higher-dimensional volume, of a n-dimensional simplex in terms of the squares of all of the distances between pairs of its vertices. The determinant is named after Arthur Cayley and Karl Menger. The pairwise distance polynomials between ''n'' points in a real Euclidean space are Euclidean invariants that are associated via the Cayley-Menger relations.Sitharam, Meera; St. John, Audrey; Sidman, Jessica. ''Handbook of Geometric Constraint Systems Principles''. Boca Raton, FL: CRC Press. These relations served multiple purposes such as generalising Heron's Formula, computing the content of a ''n''-dimensional simplex, and ultimately determining if any real symmetric matrix is a Euclidean distance matrix in the field of Distance geometry. History Karl Menger was a young geometry professor at the University of Vienna and Arthur Cayley was a British mathematician ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euclidean Distance Matrix
In mathematics, a Euclidean distance matrix is an matrix representing the spacing of a set of points in Euclidean space. For points x_1,x_2,\ldots,x_n in -dimensional space , the elements of their Euclidean distance matrix are given by squares of distances between them. That is :\begin A & = (a_); \\ a_ & = d_^2 \;=\; \lVert x_i - x_j\rVert^2 \end where \, \cdot\, denotes the Euclidean norm on . :A = \begin 0 & d_^2 & d_^2 & \dots & d_^2 \\ d_^2 & 0 & d_^2 & \dots & d_^2 \\ d_^2 & d_^2 & 0 & \dots & d_^2 \\ \vdots&\vdots & \vdots & \ddots&\vdots& \\ d_^2 & d_^2 & d_^2 & \dots & 0 \\ \end In the context of (not necessarily Euclidean) distance matrices, the entries are usually defined directly as distances, not their squares. However, in the Euclidean case, squares of distances are used to avoid computing square roots and to simplify relevant theorems and algorithms. Euclidean distance matrices are closely related to Gram matrices (matrices of dot products, describing no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discriminant
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry. The discriminant of the quadratic polynomial ax^2+bx+c is :b^2-4ac, the quantity which appears under the square root in the quadratic formula. If a\ne 0, this discriminant is zero if and only if the polynomial has a double root. In the case of real coefficients, it is positive if the polynomial has two distinct real roots, and negative if it has two distinct complex conjugate roots. Similarly, the discriminant of a cubic polynomial is zero if and only if the polynomial has a multiple root. In the case of a cubic with real coefficients, the discriminant is positive if the polynomial has three distinct real roots, and negative i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Menger's Theorem
In the mathematical discipline of graph theory, Menger's theorem says that in a finite graph, the size of a minimum cut set is equal to the maximum number of disjoint paths that can be found between any pair of vertices. Proved by Karl Menger in 1927, it characterizes the connectivity of a graph. It is generalized by the max-flow min-cut theorem, which is a weighted, edge version, and which in turn is a special case of the strong duality theorem for linear programs. Edge connectivity The edge-connectivity version of Menger's theorem is as follows: :Let ''G'' be a finite undirected graph and ''x'' and ''y'' two distinct vertices. Then the size of the minimum edge cut for ''x'' and ''y'' (the minimum number of edges whose removal disconnects ''x'' and ''y'') is equal to the maximum number of pairwise edge-independent paths from ''x'' to ''y''. :Extended to all pairs: a graph is ''k''-edge-connected (it remains connected after removing fewer than ''k'' edges) if and only if e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra and the only one that has fewer than 5 faces. The tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex, and may thus also be called a 3-simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point. In the case of a tetrahedron the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid". Like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. It has two such nets. For any tetrahedron there exists a sphere (called the circumsphere) on which all four vertices lie, and another sphere ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brahmagupta–Fibonacci Identity
In algebra, the Brahmagupta–Fibonacci identity expresses the product of two sums of two squares as a sum of two squares in two different ways. Hence the set of all sums of two squares is closed under multiplication. Specifically, the identity says :\begin \left(a^2 + b^2\right)\left(c^2 + d^2\right) & = \left(ac-bd\right)^2 + \left(ad+bc\right)^2 & & (1) \\ & = \left(ac+bd\right)^2 + \left(ad-bc\right)^2. & & (2) \end For example, :(1^2 + 4^2)(2^2 + 7^2) = 26^2 + 15^2 = 30^2 + 1^2. The identity is also known as the Diophantus identity,Daniel Shanks, Solved and unsolved problems in number theory, p.209, American Mathematical Society, Fourth edition 1993. as it was first proved by Diophantus of Alexandria. It is a special case of Euler's four-square identity, and also of Lagrange's identity. Brahmagupta proved and used a more general identity (the Brahmagupta identity), equivalent to :\begin \left(a^2 + nb^2\right)\left(c^2 + nd^2\r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangle
A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non-Collinearity, collinear, determine a unique triangle and simultaneously, a unique Plane (mathematics), plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; however, in higher-dimensional Euclidean spaces, this is no longer true. This article is about triangles in Euclidean geometry, and in particular, the Euclidean plane, except where otherwise noted. Types of triangle The terminology for categorizing triangles is more than two thousand years old, having been defined on the very first page of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Area
Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape A shape or figure is a graphics, graphical representation of an object or its external boundary, outline, or external Surface (mathematics), surface, as opposed to other properties such as color, Surface texture, texture, or material type. A pl ... or planar lamina, while ''surface area'' refers to the area of an open surface or the boundary (mathematics), boundary of a solid geometry, three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a plane curve, curve (a one-dimensional concept) or the volume of a solid (a three-dimensional concept). The area of a shape can be measured by com ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Space
In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of \mathbb R^n with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane. It is also sometimes referred to as Lobachevsky space or Bolyai–Lobachevsky space after the names of the author who first published on the topic of hyperbolic geometry. Sometimes the qualificative "real" is added to differentiate it from complex hyperbolic spaces, quaternionic hyperbolic spaces and the octononic hyperbolic plane which are the other symmetric spaces of negative curvature. Hyperbolic space serves as the prototype of a Gromov hyperbolic space which is a far-reachin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spherical Distance
The great-circle distance, orthodromic distance, or spherical distance is the distance along a great circle. It is the shortest distance between two points on the surface of a sphere, measured along the surface of the sphere (as opposed to a straight line through the sphere's interior). The distance between two points in Euclidean space is the length of a straight line between them, but on the sphere there are no straight lines. In spaces with curvature, straight lines are replaced by geodesics. Geodesics on the sphere are circles on the sphere whose centers coincide with the center of the sphere, and are called 'great circles'. The determination of the great-circle distance is part of the more general problem of great-circle navigation, which also computes the azimuths at the end points and intermediate way-points. Through any two points on a sphere that are not antipodal points (directly opposite each other), there is a unique great circle. The two points separate the great ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spherical Space Form
In mathematics, a spherical 3-manifold ''M'' is a 3-manifold of the form :M=S^3/\Gamma where \Gamma is a finite subgroup of SO(4) acting freely by rotations on the 3-sphere S^3. All such manifolds are prime, orientable, and closed. Spherical 3-manifolds are sometimes called elliptic 3-manifolds or Clifford-Klein manifolds. Properties A spherical 3-manifold S^3/\Gamma has a finite fundamental group isomorphic to Γ itself. The elliptization conjecture, proved by Grigori Perelman, states that conversely all compact 3-manifolds with finite fundamental group are spherical manifolds. The fundamental group is either cyclic, or is a central extension of a dihedral, tetrahedral, octahedral, or icosahedral group by a cyclic group of even order. This divides the set of such manifolds into 5 classes, described in the following sections. The spherical manifolds are exactly the manifolds with spherical geometry, one of the 8 geometries of Thurston's geometrization conjecture. Cyclic ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |