HOME
*





Cayley's Ω Process
In mathematics, Cayley's Ω process, introduced by , is a relatively invariant differential operator on the general linear group, that is used to construct invariants of a group action. As a partial differential operator acting on functions of ''n''2 variables ''x''''ij'', the omega operator is given by the determinant : \Omega = \begin \frac & \cdots &\frac \\ \vdots& \ddots & \vdots\\ \frac & \cdots &\frac \end. For binary forms ''f'' in ''x''1, ''y''1 and ''g'' in ''x''2, ''y''2 the Ω operator is \frac - \frac. The ''r''-fold Ω process Ω''r''(''f'', ''g'') on two forms ''f'' and ''g'' in the variables ''x'' and ''y'' is then # Convert ''f'' to a form in ''x''1, ''y''1 and ''g'' to a form in ''x''2, ''y''2 # Apply the Ω operator ''r'' times to the function ''fg'', that is, ''f'' times ''g'' in these four variables # Substitute ''x'' for ''x''1 and ''x''2, ''y'' for ''y''1 and ''y''2 in the result The result of the ''r''-fold Ω process Ω''r''(''f'', ''g'') on the two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Operator
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science). This article considers mainly linear differential operators, which are the most common type. However, non-linear differential operators also exist, such as the Schwarzian derivative. Definition An order-m linear differential operator is a map A from a function space \mathcal_1 to another function space \mathcal_2 that can be written as: A = \sum_a_\alpha(x) D^\alpha\ , where \alpha = (\alpha_1,\alpha_2,\cdots,\alpha_n) is a multi-index of non-negative integers, , \alpha, = \alpha_1 + \alpha_2 + \cdots + \alpha_n, and for each \alpha, a_\alpha(x) is a function on some open domain in ''n''-dimensional space. The operator D^\alpha is interpreted as D^\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Linear Group
In mathematics, the general linear group of degree ''n'' is the set of invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with identity matrix as the identity element of the group. The group is so named because the columns (and also the rows) of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position. To be more precise, it is necessary to specify what kind of objects may appear in the entries of the matrix. For example, the general linear group over R (the set of real numbers) is the group of invertible matrices of real numbers, and is denoted by GL''n''(R) or . More generally, the general linear group of degree ''n'' over an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Invariant (mathematics)
In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an equivalence relation is a property that is constant on each equivalence class. Invariants are used in diverse areas of mathematics such as geometry, topology, algebra and discrete mathematics. Some important classes of transformations are defined by an invariant they leave unchanged. For example, conformal maps are defined as transformations of the plane that preserve angles. The discovery of invariants is an important ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action (mathematics)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partial Differential Operator
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science). This article considers mainly linear differential operators, which are the most common type. However, non-linear differential operators also exist, such as the Schwarzian derivative. Definition An order-m linear differential operator is a map A from a function space \mathcal_1 to another function space \mathcal_2 that can be written as: A = \sum_a_\alpha(x) D^\alpha\ , where \alpha = (\alpha_1,\alpha_2,\cdots,\alpha_n) is a multi-index of non-negative integers, , \alpha, = \alpha_1 + \alpha_2 + \cdots + \alpha_n, and for each \alpha, a_\alpha(x) is a function on some open domain in ''n''-dimensional space. The operator D^\alpha is interpreted as D^\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix is denoted , , or . The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e & f \\ g & h & i \end= aei + bfg + cdh - ceg - bdi - afh. The determinant of a matrix can be defined in several equivalent ways. Leibniz formula expresses the determinant as a sum of signed products of matrix entries such that each summand is the product of different entries, and the number of these summands is n!, the factorial of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invariant Of A Binary Form
In mathematical invariant theory, an invariant of a binary form is a polynomial in the coefficients of a binary form in two variables ''x'' and ''y'' that remains invariant under the special linear group acting on the variables ''x'' and ''y''. Terminology A binary form (of degree ''n'') is a homogeneous polynomial Σ ()''a''''n''−''i''''x''''n''−''i''''y''''i'' = ''a''''n''''x''''n'' + ()''a''''n''−1''x''''n''−1''y'' + ... + ''a''0''y''''n''. The group ''SL''2(C) acts on these forms by taking ''x'' to ''ax'' + ''by'' and ''y'' to ''cx'' + ''dy''. This induces an action on the space spanned by ''a''0, ..., ''a''''n'' and on the polynomials in these variables. An invariant is a polynomial in these ''n'' + 1 variables ''a''0, ..., ''a''''n'' that is invariant under this action. More generally a covariant is a polynomial in ''a''0, ..., ''a''''n'', ''x'', ''y'' that is invariant, so an invariant is a special case of a cov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Transvectant
In mathematical invariant theory, a transvectant is an invariant formed from ''n'' invariants in ''n'' variables using Cayley's Ω process. Definition If ''Q''1,...,''Q''''n'' are functions of ''n'' variables x = (''x''1,...,''x''''n'') and ''r'' ≥ 0 is an integer then the ''r''th transvectant of these functions is a function of ''n'' variables given by : tr \Omega^r(Q_1\otimes\cdots \otimes Q_n) where Ω is Cayley's Ω process, the tensor product means take a product of functions with different variables x1,..., x''n'', and tr means set all the vectors x''k'' equal. Examples The zeroth transvectant is the product of the ''n'' functions. The first transvectant is the Jacobian determinant In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables ... of the ''n'' functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Capelli's Identity
In mathematics, Capelli's identity, named after , is an analogue of the formula det(''AB'') = det(''A'') det(''B''), for certain matrices with noncommuting entries, related to the representation theory of the Lie algebra \mathfrak_n. It can be used to relate an invariant ''ƒ'' to the invariant Ω''ƒ'', where Ω is Cayley's Ω process. Statement Suppose that ''x''''ij'' for ''i'',''j'' = 1,...,''n'' are commuting variables. Write ''E''ij for the polarization operator :E_ = \sum_^n x_\frac. The Capelli identity states that the following differential operators, expressed as determinants, are equal: : \begin E_+n-1 & \cdots &E_& E_ \\ \vdots& \ddots & \vdots&\vdots\\ E_ & \cdots & E_+1&E_ \\ E_ & \cdots & E_& E_ +0\end = \begin x_ & \cdots & x_ \\ \vdots& \ddots & \vdots\\ x_ & \cdots & x_ \end \begin \frac & \cdots &\frac \\ \vdots& \ddots & \vdots\\ \frac & \cdots &\frac \end. Both sides are differential operators. The determinant on the left has non-co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reynolds Operator
In fluid dynamics and invariant theory, a Reynolds operator is a mathematical operator given by averaging something over a group action, satisfying a set of properties called Reynolds rules. In fluid dynamics Reynolds operators are often encountered in models of turbulent flows, particularly the Reynolds-averaged Navier–Stokes equations, where the average is typically taken over the fluid flow under the group of time translations. In invariant theory the average is often taken over a compact group or reductive algebraic group acting on a commutative algebra, such as a ring of polynomials. Reynolds operators were introduced into fluid dynamics by and named by . Definition Reynolds operators are used in fluid dynamics, functional analysis, and invariant theory, and the notation and definitions in these areas differ slightly. A Reynolds operator acting on φ is sometimes denoted by R(\phi),P(\phi),\rho(\phi),\langle \phi \rangle or \overline. Reynolds operators are usually linea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematische Annalen
''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück, and Nigel Hitchin. Currently, the managing editor of Mathematische Annalen is Thomas Schick. Volumes 1–80 (1869–1919) were published by Teubner. Since 1920 (vol. 81), the journal has been published by Springer. In the late 1920s, under the editorship of Hilbert, the journal became embroiled in controversy over the participation of L. E. J. Brouwer on its editorial board, a spillover from the foundational Brouwer–Hilbert controversy. Between 1945 and 1947 the journal briefly ceased publication. References External links''Mathematische Annalen''homepage at Springer''Mathematische Annalen''archive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Transactions Of The American Mathematical Society
The ''Transactions of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. It was established in 1900. As a requirement, all articles must be more than 15 printed pages. See also * ''Bulletin of the American Mathematical Society'' * ''Journal of the American Mathematical Society'' * '' Memoirs of the American Mathematical Society'' * ''Notices of the American Mathematical Society'' * '' Proceedings of the American Mathematical Society'' External links * ''Transactions of the American Mathematical Society''on JSTOR JSTOR (; short for ''Journal Storage'') is a digital library founded in 1995 in New York City. Originally containing digitized back issues of academic journals, it now encompasses books and other primary sources as well as current issues of j ... American Mathematical Society academic journals Mathematics journals Publications established in 1900 {{math-journal-s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]