HOME
*



picture info

Cauchy Momentum Equation
The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum. Main equation In convective (or Lagrangian) form the Cauchy momentum equation is written as: : \frac = \frac 1 \rho \nabla \cdot \boldsymbol + \mathbf where * \mathbf is the flow velocity vector field, which depends on time and space, (unit: \mathrm) * t is time, (unit: \mathrm) * \frac is the material derivative of \mathbf, equal to \partial_t\mathbf + \mathbf\cdot \nabla\mathbf, (unit: \mathrm) * \rho is the density at a given point of the continuum (for which the continuity equation holds), (unit: \mathrm) * \boldsymbol is the stress tensor, (unit: \mathrm) * \mathbf=\beginf_x\\ f_y\\ f_z\end is a vector containing all of the accelerations caused by body forces (sometimes simply gravitational acceleration), (unit: \mathrm) * \nabla\cdot\boldsymbol= \begin \dfrac + \dfrac + \dfrac \\ \dfrac + \dfrac + \dfrac \\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to Numerical methods for partial differential equations, numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematics, pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartesian Coordinate System
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length. Each reference coordinate line is called a ''coordinate axis'' or just ''axis'' (plural ''axes'') of the system, and the point where they meet is its ''origin'', at ordered pair . The coordinates can also be defined as the positions of the perpendicular projections of the point onto the two axes, expressed as signed distances from the origin. One can use the same principle to specify the position of any point in three-dimensional space by three Cartesian coordinates, its signed distances to three mutually perpendicular planes (or, equivalently, by its perpendicular projection onto three mutually perpendicular lines). In general, ''n'' Cartesian coordinates (an element of real ''n''-space) specify the point in an ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tensor Derivative
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component (dependent on the embedding) and the intrinsic covariant derivative component. The name is motivated by the importance of changes of coordinate in physics: the covariant derivative transforms covariantly under a general coordinate transformation, that is, linearly via the Jacobia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reynolds Transport Theorem
In differential calculus, the Reynolds transport theorem (also known as the Leibniz–Reynolds transport theorem), or simply the Reynolds theorem, named after Osborne Reynolds (1842–1912), is a three-dimensional generalization of the Leibniz integral rule. It is used to recast time derivatives of integrated quantities and is useful in formulating the basic equations of continuum mechanics. Consider integrating over the time-dependent region that has boundary , then taking the derivative with respect to time: :\frac\int_ \mathbf\,dV. If we wish to move the derivative into the integral, there are two issues: the time dependence of , and the introduction of and removal of space from due to its dynamic boundary. Reynolds transport theorem provides the necessary framework. General form Reynolds transport theorem can be expressed as follows: L. G. Leal, 2007, p. 23. O. Reynolds, 1903, Vol. 3, p. 12–13 J.E. Marsden and A. Tromba, 5th ed. 2003 :\frac\int_ \mathbf\,dV = \int_ \f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Control Volume
In continuum mechanics and thermodynamics, a control volume (CV) is a mathematical abstraction employed in the process of creating mathematical models of physical processes. In an inertial frame of reference, it is a fictitious region of a given volume fixed in space or moving with constant flow velocity through which the continuum (gas, liquid or solid) flows. The closed surface enclosing the region is referred to as the control surface. At steady state, a control volume can be thought of as an arbitrary volume in which the mass of the continuum remains constant. As a continuum moves through the control volume, the mass entering the control volume is equal to the mass leaving the control volume. At steady state, and in the absence of work and heat transfer, the energy within the control volume remains constant. It is analogous to the classical mechanics concept of the free body diagram. Overview Typically, to understand how a given physical law applies to the system under conside ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Newton's Second Law
Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion at a constant speed in a straight line, unless acted upon by a force. # When a body is acted upon by a force, the time rate of change of its momentum equals the force. # If two bodies exert forces on each other, these forces have the same magnitude but opposite directions. The three laws of motion were first stated by Isaac Newton in his '' Philosophiæ Naturalis Principia Mathematica'' (''Mathematical Principles of Natural Philosophy''), originally published in 1687. Newton used them to investigate and explain the motion of many physical objects and systems, which laid the foundation for classical mechanics. In the time since Newton, the conceptual content of classical physics has been reformulated in alternative ways, involving differen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Taylor's Theorem
In calculus, Taylor's theorem gives an approximation of a ''k''-times differentiable function around a given point by a polynomial of degree ''k'', called the ''k''th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order ''k'' of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial. Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1715, although an earlier version of the result was already mentioned in 1671 by James Gregory. Taylor's theorem is taught in introductory-level calculus courses and is one of the central elementary tools in mathematical analysis. It gives simple arithmetic formula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Surface Force
Surface force denoted ''fs'' is the force that acts across an internal or external surface element in a material body. Surface force can be decomposed into two perpendicular components: normal forces and shear forces. A normal force acts normally over an area and a shear force acts tangentially over an area. Equations for surface force Surface force due to pressure : f_s=p \cdot A \ , where ''f'' = force, ''p'' = pressure, and ''A'' = area on which a uniform pressure acts Examples Pressure related surface force Since pressure is \frac=\mathrm , and area is a (length)\cdot(width) = \mathrm= \mathrm , :a pressure of 5\ \mathrm = 5\ \mathrm over an area of 20\ \mathrm will produce a surface force of (5\ \mathrm) \cdot (20\ \mathrm) = 100\ \mathrm . See also *Body force *Contact force A contact force is any force that occurs as a result of two objects making contact with each other. Contact forces are ubiquitous and are responsible for most visible inter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the "instantaneous rate of change", the ratio of the instantaneous change in the dependent variable to that of the independent variable. Derivatives can be generalized to functions of several real variables. In this generalization, the derivativ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mass Flux
In physics and engineering, mass flux is the rate of mass flow. Its SI units are kg m−2 s−1. The common symbols are ''j'', ''J'', ''q'', ''Q'', ''φ'', or Φ (Greek lower or capital Phi), sometimes with subscript ''m'' to indicate mass is the flowing quantity. Mass flux can also refer to an alternate form of flux in Fick's law that includes the molecular mass, or in Darcy's law that includes the mass density. Sometimes the defining equation for mass flux in this article is used interchangeably with the defining equation in mass flow rate. For example, ''Fluid Mechanics, Schaum's et al'' uses the definition of mass flux as the equation in the mass flow rate article. Definition Mathematically, mass flux is defined as the limit j_m = \lim_ \frac, where I_m = \lim_ \frac = \frac is the mass current (flow of mass per unit time ) and is the area through which the mass flows. For mass flux as a vector , the surface integral of it over a surface ''S'', followed by an integral ov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]